Properties

Label 2-50-1.1-c25-0-32
Degree $2$
Conductor $50$
Sign $-1$
Analytic cond. $197.998$
Root an. cond. $14.0711$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.09e3·2-s − 1.16e5·3-s + 1.67e7·4-s − 4.77e8·6-s + 1.34e10·7-s + 6.87e10·8-s − 8.33e11·9-s + 4.67e11·11-s − 1.95e12·12-s + 9.38e13·13-s + 5.50e13·14-s + 2.81e14·16-s − 6.14e14·17-s − 3.41e15·18-s − 1.66e16·19-s − 1.56e15·21-s + 1.91e15·22-s + 1.60e17·23-s − 8.01e15·24-s + 3.84e17·26-s + 1.96e17·27-s + 2.25e17·28-s − 1.05e18·29-s − 3.00e18·31-s + 1.15e18·32-s − 5.45e16·33-s − 2.51e18·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.126·3-s + 0.5·4-s − 0.0896·6-s + 0.366·7-s + 0.353·8-s − 0.983·9-s + 0.0449·11-s − 0.0633·12-s + 1.11·13-s + 0.259·14-s + 0.250·16-s − 0.255·17-s − 0.695·18-s − 1.72·19-s − 0.0465·21-s + 0.0317·22-s + 1.53·23-s − 0.0448·24-s + 0.790·26-s + 0.251·27-s + 0.183·28-s − 0.551·29-s − 0.685·31-s + 0.176·32-s − 0.00569·33-s − 0.180·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(197.998\)
Root analytic conductor: \(14.0711\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 50,\ (\ :25/2),\ -1)\)

Particular Values

\(L(13)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4.09e3T \)
5 \( 1 \)
good3 \( 1 + 1.16e5T + 8.47e11T^{2} \)
7 \( 1 - 1.34e10T + 1.34e21T^{2} \)
11 \( 1 - 4.67e11T + 1.08e26T^{2} \)
13 \( 1 - 9.38e13T + 7.05e27T^{2} \)
17 \( 1 + 6.14e14T + 5.77e30T^{2} \)
19 \( 1 + 1.66e16T + 9.30e31T^{2} \)
23 \( 1 - 1.60e17T + 1.10e34T^{2} \)
29 \( 1 + 1.05e18T + 3.63e36T^{2} \)
31 \( 1 + 3.00e18T + 1.92e37T^{2} \)
37 \( 1 - 3.36e19T + 1.60e39T^{2} \)
41 \( 1 - 5.09e19T + 2.08e40T^{2} \)
43 \( 1 + 2.92e20T + 6.86e40T^{2} \)
47 \( 1 - 9.77e20T + 6.34e41T^{2} \)
53 \( 1 + 5.26e21T + 1.27e43T^{2} \)
59 \( 1 - 4.10e20T + 1.86e44T^{2} \)
61 \( 1 + 5.44e21T + 4.29e44T^{2} \)
67 \( 1 + 6.32e22T + 4.48e45T^{2} \)
71 \( 1 + 1.81e22T + 1.91e46T^{2} \)
73 \( 1 - 3.48e23T + 3.82e46T^{2} \)
79 \( 1 - 3.43e23T + 2.75e47T^{2} \)
83 \( 1 + 6.85e23T + 9.48e47T^{2} \)
89 \( 1 + 4.29e24T + 5.42e48T^{2} \)
97 \( 1 - 2.90e24T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90016275892947585620938112617, −9.054234944149070459552504625502, −8.133753180465471118332240056815, −6.67523736490402107349380770004, −5.81878266763209471720874419260, −4.73131741716939731113093320322, −3.62227231481011207344262671958, −2.52453471070194034842298491789, −1.36542102772041476671398671123, 0, 1.36542102772041476671398671123, 2.52453471070194034842298491789, 3.62227231481011207344262671958, 4.73131741716939731113093320322, 5.81878266763209471720874419260, 6.67523736490402107349380770004, 8.133753180465471118332240056815, 9.054234944149070459552504625502, 10.90016275892947585620938112617

Graph of the $Z$-function along the critical line