Properties

Label 2-50-1.1-c25-0-20
Degree $2$
Conductor $50$
Sign $1$
Analytic cond. $197.998$
Root an. cond. $14.0711$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.09e3·2-s + 1.47e6·3-s + 1.67e7·4-s − 6.04e9·6-s − 3.57e9·7-s − 6.87e10·8-s + 1.32e12·9-s + 1.08e12·11-s + 2.47e13·12-s − 2.13e13·13-s + 1.46e13·14-s + 2.81e14·16-s + 3.79e15·17-s − 5.43e15·18-s + 6.90e15·19-s − 5.27e15·21-s − 4.44e15·22-s + 1.56e17·23-s − 1.01e17·24-s + 8.73e16·26-s + 7.08e17·27-s − 6.00e16·28-s + 6.08e17·29-s − 3.42e18·31-s − 1.15e18·32-s + 1.60e18·33-s − 1.55e19·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.60·3-s + 0.5·4-s − 1.13·6-s − 0.0977·7-s − 0.353·8-s + 1.56·9-s + 0.104·11-s + 0.801·12-s − 0.253·13-s + 0.0691·14-s + 0.250·16-s + 1.57·17-s − 1.10·18-s + 0.715·19-s − 0.156·21-s − 0.0737·22-s + 1.48·23-s − 0.566·24-s + 0.179·26-s + 0.907·27-s − 0.0488·28-s + 0.319·29-s − 0.782·31-s − 0.176·32-s + 0.167·33-s − 1.11·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(197.998\)
Root analytic conductor: \(14.0711\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(3.604844729\)
\(L(\frac12)\) \(\approx\) \(3.604844729\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4.09e3T \)
5 \( 1 \)
good3 \( 1 - 1.47e6T + 8.47e11T^{2} \)
7 \( 1 + 3.57e9T + 1.34e21T^{2} \)
11 \( 1 - 1.08e12T + 1.08e26T^{2} \)
13 \( 1 + 2.13e13T + 7.05e27T^{2} \)
17 \( 1 - 3.79e15T + 5.77e30T^{2} \)
19 \( 1 - 6.90e15T + 9.30e31T^{2} \)
23 \( 1 - 1.56e17T + 1.10e34T^{2} \)
29 \( 1 - 6.08e17T + 3.63e36T^{2} \)
31 \( 1 + 3.42e18T + 1.92e37T^{2} \)
37 \( 1 + 7.61e19T + 1.60e39T^{2} \)
41 \( 1 - 2.17e20T + 2.08e40T^{2} \)
43 \( 1 + 4.70e20T + 6.86e40T^{2} \)
47 \( 1 - 6.53e20T + 6.34e41T^{2} \)
53 \( 1 - 4.54e21T + 1.27e43T^{2} \)
59 \( 1 - 1.39e22T + 1.86e44T^{2} \)
61 \( 1 + 4.30e21T + 4.29e44T^{2} \)
67 \( 1 + 3.04e22T + 4.48e45T^{2} \)
71 \( 1 + 4.08e22T + 1.91e46T^{2} \)
73 \( 1 - 1.14e23T + 3.82e46T^{2} \)
79 \( 1 - 6.98e23T + 2.75e47T^{2} \)
83 \( 1 + 1.18e24T + 9.48e47T^{2} \)
89 \( 1 - 2.79e24T + 5.42e48T^{2} \)
97 \( 1 - 1.06e25T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41733667112266166366015277756, −9.500764326324518817873433082286, −8.746213761039097463534423497432, −7.75517708081166202534425351081, −7.01155614330686515424598522013, −5.27978378460535468542022702426, −3.57633042962747265535331697554, −2.95093618486670167139879099364, −1.81097538074598414604652979047, −0.848819215835978688464876235594, 0.848819215835978688464876235594, 1.81097538074598414604652979047, 2.95093618486670167139879099364, 3.57633042962747265535331697554, 5.27978378460535468542022702426, 7.01155614330686515424598522013, 7.75517708081166202534425351081, 8.746213761039097463534423497432, 9.500764326324518817873433082286, 10.41733667112266166366015277756

Graph of the $Z$-function along the critical line