Properties

Label 2-50-1.1-c11-0-1
Degree $2$
Conductor $50$
Sign $1$
Analytic cond. $38.4171$
Root an. cond. $6.19815$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 32·2-s − 745.·3-s + 1.02e3·4-s + 2.38e4·6-s + 7.14e4·7-s − 3.27e4·8-s + 3.78e5·9-s − 3.45e5·11-s − 7.63e5·12-s − 1.50e6·13-s − 2.28e6·14-s + 1.04e6·16-s + 5.39e6·17-s − 1.21e7·18-s − 1.11e7·19-s − 5.33e7·21-s + 1.10e7·22-s + 5.27e6·23-s + 2.44e7·24-s + 4.83e7·26-s − 1.50e8·27-s + 7.32e7·28-s − 1.86e7·29-s + 7.10e7·31-s − 3.35e7·32-s + 2.57e8·33-s − 1.72e8·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.77·3-s + 0.5·4-s + 1.25·6-s + 1.60·7-s − 0.353·8-s + 2.13·9-s − 0.647·11-s − 0.885·12-s − 1.12·13-s − 1.13·14-s + 0.250·16-s + 0.921·17-s − 1.51·18-s − 1.03·19-s − 2.84·21-s + 0.457·22-s + 0.170·23-s + 0.626·24-s + 0.797·26-s − 2.01·27-s + 0.803·28-s − 0.168·29-s + 0.445·31-s − 0.176·32-s + 1.14·33-s − 0.651·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(50\)    =    \(2 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(38.4171\)
Root analytic conductor: \(6.19815\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 50,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(0.6915467825\)
\(L(\frac12)\) \(\approx\) \(0.6915467825\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 32T \)
5 \( 1 \)
good3 \( 1 + 745.T + 1.77e5T^{2} \)
7 \( 1 - 7.14e4T + 1.97e9T^{2} \)
11 \( 1 + 3.45e5T + 2.85e11T^{2} \)
13 \( 1 + 1.50e6T + 1.79e12T^{2} \)
17 \( 1 - 5.39e6T + 3.42e13T^{2} \)
19 \( 1 + 1.11e7T + 1.16e14T^{2} \)
23 \( 1 - 5.27e6T + 9.52e14T^{2} \)
29 \( 1 + 1.86e7T + 1.22e16T^{2} \)
31 \( 1 - 7.10e7T + 2.54e16T^{2} \)
37 \( 1 + 3.23e8T + 1.77e17T^{2} \)
41 \( 1 + 9.11e8T + 5.50e17T^{2} \)
43 \( 1 - 1.16e9T + 9.29e17T^{2} \)
47 \( 1 + 2.81e8T + 2.47e18T^{2} \)
53 \( 1 + 4.05e9T + 9.26e18T^{2} \)
59 \( 1 - 4.89e9T + 3.01e19T^{2} \)
61 \( 1 - 1.07e10T + 4.35e19T^{2} \)
67 \( 1 + 3.70e9T + 1.22e20T^{2} \)
71 \( 1 - 3.45e9T + 2.31e20T^{2} \)
73 \( 1 - 2.21e10T + 3.13e20T^{2} \)
79 \( 1 - 7.02e9T + 7.47e20T^{2} \)
83 \( 1 + 5.55e10T + 1.28e21T^{2} \)
89 \( 1 + 9.29e9T + 2.77e21T^{2} \)
97 \( 1 + 4.71e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58697257273047064366454076961, −11.71507379396945688528180149852, −10.86997165167432751045653969930, −10.04212710327705110382342996381, −8.130398260447055630456408112537, −7.04449819738898181160801587065, −5.53788334742394546200910728897, −4.70465236742836023599543065623, −1.88529743289668715644782492150, −0.60743979274823063758381233826, 0.60743979274823063758381233826, 1.88529743289668715644782492150, 4.70465236742836023599543065623, 5.53788334742394546200910728897, 7.04449819738898181160801587065, 8.130398260447055630456408112537, 10.04212710327705110382342996381, 10.86997165167432751045653969930, 11.71507379396945688528180149852, 12.58697257273047064366454076961

Graph of the $Z$-function along the critical line