L(s) = 1 | + 9.36e3i·2-s + 5.31e5i·3-s − 5.40e7·4-s + (−5.44e8 − 3.61e7i)5-s − 4.97e9·6-s − 1.37e10i·7-s − 1.92e11i·8-s + 5.64e11·9-s + (3.37e11 − 5.09e12i)10-s − 9.26e12·11-s − 2.87e13i·12-s − 1.02e14i·13-s + 1.28e14·14-s + (1.91e13 − 2.89e14i)15-s − 1.55e13·16-s + 3.06e15i·17-s + ⋯ |
L(s) = 1 | + 1.61i·2-s + 0.577i·3-s − 1.61·4-s + (−0.997 − 0.0661i)5-s − 0.933·6-s − 0.375i·7-s − 0.988i·8-s + 0.666·9-s + (0.106 − 1.61i)10-s − 0.890·11-s − 0.930i·12-s − 1.21i·13-s + 0.607·14-s + (0.0381 − 0.576i)15-s − 0.0138·16-s + 1.27i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0661i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(0.415399 - 0.0137501i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.415399 - 0.0137501i\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (5.44e8 + 3.61e7i)T \) |
good | 2 | \( 1 - 9.36e3iT - 3.35e7T^{2} \) |
| 3 | \( 1 - 5.31e5iT - 8.47e11T^{2} \) |
| 7 | \( 1 + 1.37e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 + 9.26e12T + 1.08e26T^{2} \) |
| 13 | \( 1 + 1.02e14iT - 7.05e27T^{2} \) |
| 17 | \( 1 - 3.06e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 - 5.00e15T + 9.30e31T^{2} \) |
| 23 | \( 1 + 9.11e16iT - 1.10e34T^{2} \) |
| 29 | \( 1 + 3.16e18T + 3.63e36T^{2} \) |
| 31 | \( 1 - 3.22e18T + 1.92e37T^{2} \) |
| 37 | \( 1 + 1.59e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 + 8.10e19T + 2.08e40T^{2} \) |
| 43 | \( 1 + 3.97e20iT - 6.86e40T^{2} \) |
| 47 | \( 1 + 9.69e20iT - 6.34e41T^{2} \) |
| 53 | \( 1 + 5.88e21iT - 1.27e43T^{2} \) |
| 59 | \( 1 + 2.11e22T + 1.86e44T^{2} \) |
| 61 | \( 1 - 7.65e21T + 4.29e44T^{2} \) |
| 67 | \( 1 - 3.72e22iT - 4.48e45T^{2} \) |
| 71 | \( 1 + 3.96e22T + 1.91e46T^{2} \) |
| 73 | \( 1 + 4.27e22iT - 3.82e46T^{2} \) |
| 79 | \( 1 + 9.25e23T + 2.75e47T^{2} \) |
| 83 | \( 1 - 9.81e23iT - 9.48e47T^{2} \) |
| 89 | \( 1 + 1.32e24T + 5.42e48T^{2} \) |
| 97 | \( 1 + 3.52e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.84839771937259359384045808029, −15.65934526390299624033032350466, −15.02124718859463909990262433910, −12.99430682202910756758082315163, −10.45663643022194299053926278401, −8.333682474705703697503698209486, −7.26171949338929456172710835506, −5.30514362374070209649339681703, −3.89654453779974703423830544386, −0.16404146604136142879683851644,
1.35636367444452129080985308098, 2.85957060914441028818374333419, 4.46869675513449706230258130013, 7.42886827050961339730153498102, 9.456477817840484998602382989250, 11.26770728761369672012361070548, 12.20060048013250790684964960594, 13.52415005561806335899965574495, 15.81732705709704185370820889723, 18.45316108794090170591025077601