L(s) = 1 | + 2.02e3i·2-s − 5.29e5i·3-s + 2.94e7·4-s + (8.23e7 − 5.39e8i)5-s + 1.07e9·6-s − 2.78e10i·7-s + 1.27e11i·8-s + 5.66e11·9-s + (1.09e12 + 1.66e11i)10-s − 1.72e13·11-s − 1.56e13i·12-s + 4.19e13i·13-s + 5.63e13·14-s + (−2.85e14 − 4.36e13i)15-s + 7.30e14·16-s − 2.71e15i·17-s + ⋯ |
L(s) = 1 | + 0.349i·2-s − 0.575i·3-s + 0.878·4-s + (0.150 − 0.988i)5-s + 0.201·6-s − 0.760i·7-s + 0.655i·8-s + 0.668·9-s + (0.345 + 0.0527i)10-s − 1.65·11-s − 0.505i·12-s + 0.499i·13-s + 0.265·14-s + (−0.568 − 0.0868i)15-s + 0.648·16-s − 1.13i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.150 + 0.988i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (-0.150 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(1.34837 - 1.56983i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34837 - 1.56983i\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-8.23e7 + 5.39e8i)T \) |
good | 2 | \( 1 - 2.02e3iT - 3.35e7T^{2} \) |
| 3 | \( 1 + 5.29e5iT - 8.47e11T^{2} \) |
| 7 | \( 1 + 2.78e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 + 1.72e13T + 1.08e26T^{2} \) |
| 13 | \( 1 - 4.19e13iT - 7.05e27T^{2} \) |
| 17 | \( 1 + 2.71e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 + 2.11e15T + 9.30e31T^{2} \) |
| 23 | \( 1 + 1.88e17iT - 1.10e34T^{2} \) |
| 29 | \( 1 - 1.94e18T + 3.63e36T^{2} \) |
| 31 | \( 1 + 3.33e18T + 1.92e37T^{2} \) |
| 37 | \( 1 - 6.23e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 + 5.06e19T + 2.08e40T^{2} \) |
| 43 | \( 1 + 2.68e20iT - 6.86e40T^{2} \) |
| 47 | \( 1 + 1.57e20iT - 6.34e41T^{2} \) |
| 53 | \( 1 - 1.18e19iT - 1.27e43T^{2} \) |
| 59 | \( 1 - 2.75e21T + 1.86e44T^{2} \) |
| 61 | \( 1 + 4.94e21T + 4.29e44T^{2} \) |
| 67 | \( 1 + 4.65e22iT - 4.48e45T^{2} \) |
| 71 | \( 1 - 1.36e23T + 1.91e46T^{2} \) |
| 73 | \( 1 - 4.38e22iT - 3.82e46T^{2} \) |
| 79 | \( 1 - 6.86e23T + 2.75e47T^{2} \) |
| 83 | \( 1 - 1.11e24iT - 9.48e47T^{2} \) |
| 89 | \( 1 + 8.75e23T + 5.42e48T^{2} \) |
| 97 | \( 1 - 8.28e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.72762848192603282289866666407, −15.75564079849883174377282136134, −13.59931202880355798795823296643, −12.29909165818471203760652095714, −10.38699776030346356902337536828, −8.054969517950303876483670312078, −6.80779005563363473915970318914, −4.88614547941485529442903507396, −2.26688796256954742390729287060, −0.71214321673597195099976912568,
2.04963738613577035186767834951, 3.32324998553507603714917581391, 5.73805219857841068316205032954, 7.53563696941935960875573616328, 10.06981714436225394013914119980, 10.96084246391001188424638496505, 12.80049475515620133414406314034, 15.17248412572866820846926835119, 15.78390084221511270633011635904, 18.08253048929777100229281420760