L(s) = 1 | + 1.05e4i·2-s − 1.42e6i·3-s − 7.87e7·4-s + (5.09e8 − 1.96e8i)5-s + 1.50e10·6-s + 3.45e10i·7-s − 4.78e11i·8-s − 1.17e12·9-s + (2.07e12 + 5.39e12i)10-s − 7.99e12·11-s + 1.11e14i·12-s + 2.45e13i·13-s − 3.65e14·14-s + (−2.78e14 − 7.24e14i)15-s + 2.42e15·16-s + 1.75e15i·17-s + ⋯ |
L(s) = 1 | + 1.82i·2-s − 1.54i·3-s − 2.34·4-s + (0.933 − 0.359i)5-s + 2.82·6-s + 0.942i·7-s − 2.46i·8-s − 1.38·9-s + (0.656 + 1.70i)10-s − 0.768·11-s + 3.62i·12-s + 0.292i·13-s − 1.72·14-s + (−0.554 − 1.44i)15-s + 2.15·16-s + 0.731i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.933 + 0.359i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (-0.933 + 0.359i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(0.115579 - 0.622377i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.115579 - 0.622377i\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-5.09e8 + 1.96e8i)T \) |
good | 2 | \( 1 - 1.05e4iT - 3.35e7T^{2} \) |
| 3 | \( 1 + 1.42e6iT - 8.47e11T^{2} \) |
| 7 | \( 1 - 3.45e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 + 7.99e12T + 1.08e26T^{2} \) |
| 13 | \( 1 - 2.45e13iT - 7.05e27T^{2} \) |
| 17 | \( 1 - 1.75e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 + 1.10e16T + 9.30e31T^{2} \) |
| 23 | \( 1 - 1.79e17iT - 1.10e34T^{2} \) |
| 29 | \( 1 + 2.26e18T + 3.63e36T^{2} \) |
| 31 | \( 1 + 4.56e18T + 1.92e37T^{2} \) |
| 37 | \( 1 - 3.51e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 + 8.43e19T + 2.08e40T^{2} \) |
| 43 | \( 1 - 5.67e19iT - 6.86e40T^{2} \) |
| 47 | \( 1 - 3.57e20iT - 6.34e41T^{2} \) |
| 53 | \( 1 - 1.71e21iT - 1.27e43T^{2} \) |
| 59 | \( 1 + 9.09e21T + 1.86e44T^{2} \) |
| 61 | \( 1 + 7.31e21T + 4.29e44T^{2} \) |
| 67 | \( 1 + 4.11e21iT - 4.48e45T^{2} \) |
| 71 | \( 1 + 5.06e21T + 1.91e46T^{2} \) |
| 73 | \( 1 + 1.13e23iT - 3.82e46T^{2} \) |
| 79 | \( 1 - 8.56e23T + 2.75e47T^{2} \) |
| 83 | \( 1 - 3.95e23iT - 9.48e47T^{2} \) |
| 89 | \( 1 - 3.25e24T + 5.42e48T^{2} \) |
| 97 | \( 1 + 5.43e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.96486697254944889455668478327, −16.94767444244452143581845475231, −15.11531507306522633368948953249, −13.58692475561775380504848316067, −12.75257827586347832817580982370, −9.025801984634834545409792825711, −7.77951440209307088553346273722, −6.32842536132531543392953380637, −5.45134938856798145186842033722, −1.80800136181170211119533386376,
0.22057167803767045601664999026, 2.34748511022892646025815074952, 3.72954026329191503416707860711, 5.00328332655389492605241508040, 9.160063844727082263649777052135, 10.40708450845264808257268236113, 10.76212621121413444101300451232, 13.09250374809896071420374293945, 14.51504223563172511043412206787, 16.84299212305879239501298853955