Properties

Label 2-5-1.1-c13-0-1
Degree $2$
Conductor $5$
Sign $1$
Analytic cond. $5.36154$
Root an. cond. $2.31550$
Motivic weight $13$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 56.4·2-s + 2.11e3·3-s − 5.00e3·4-s + 1.56e4·5-s + 1.19e5·6-s + 3.25e5·7-s − 7.44e5·8-s + 2.87e6·9-s + 8.81e5·10-s − 1.61e6·11-s − 1.05e7·12-s − 3.19e7·13-s + 1.83e7·14-s + 3.30e7·15-s − 9.98e5·16-s + 3.82e6·17-s + 1.62e8·18-s − 1.98e8·19-s − 7.82e7·20-s + 6.88e8·21-s − 9.10e7·22-s − 1.86e8·23-s − 1.57e9·24-s + 2.44e8·25-s − 1.80e9·26-s + 2.71e9·27-s − 1.62e9·28-s + ⋯
L(s)  = 1  + 0.623·2-s + 1.67·3-s − 0.611·4-s + 0.447·5-s + 1.04·6-s + 1.04·7-s − 1.00·8-s + 1.80·9-s + 0.278·10-s − 0.274·11-s − 1.02·12-s − 1.83·13-s + 0.651·14-s + 0.749·15-s − 0.0148·16-s + 0.0384·17-s + 1.12·18-s − 0.969·19-s − 0.273·20-s + 1.75·21-s − 0.171·22-s − 0.262·23-s − 1.68·24-s + 0.199·25-s − 1.14·26-s + 1.34·27-s − 0.638·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5\)
Sign: $1$
Analytic conductor: \(5.36154\)
Root analytic conductor: \(2.31550\)
Motivic weight: \(13\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5,\ (\ :13/2),\ 1)\)

Particular Values

\(L(7)\) \(\approx\) \(3.013951144\)
\(L(\frac12)\) \(\approx\) \(3.013951144\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 1.56e4T \)
good2 \( 1 - 56.4T + 8.19e3T^{2} \)
3 \( 1 - 2.11e3T + 1.59e6T^{2} \)
7 \( 1 - 3.25e5T + 9.68e10T^{2} \)
11 \( 1 + 1.61e6T + 3.45e13T^{2} \)
13 \( 1 + 3.19e7T + 3.02e14T^{2} \)
17 \( 1 - 3.82e6T + 9.90e15T^{2} \)
19 \( 1 + 1.98e8T + 4.20e16T^{2} \)
23 \( 1 + 1.86e8T + 5.04e17T^{2} \)
29 \( 1 - 2.45e9T + 1.02e19T^{2} \)
31 \( 1 + 9.66e8T + 2.44e19T^{2} \)
37 \( 1 - 2.20e10T + 2.43e20T^{2} \)
41 \( 1 - 4.05e10T + 9.25e20T^{2} \)
43 \( 1 - 2.28e10T + 1.71e21T^{2} \)
47 \( 1 + 7.97e10T + 5.46e21T^{2} \)
53 \( 1 + 2.25e11T + 2.60e22T^{2} \)
59 \( 1 - 7.96e10T + 1.04e23T^{2} \)
61 \( 1 - 4.91e11T + 1.61e23T^{2} \)
67 \( 1 - 2.25e11T + 5.48e23T^{2} \)
71 \( 1 + 6.50e11T + 1.16e24T^{2} \)
73 \( 1 + 1.03e11T + 1.67e24T^{2} \)
79 \( 1 - 2.08e12T + 4.66e24T^{2} \)
83 \( 1 - 3.39e12T + 8.87e24T^{2} \)
89 \( 1 + 7.20e12T + 2.19e25T^{2} \)
97 \( 1 - 7.00e12T + 6.73e25T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.90614686498054961947325615198, −19.36569272444477353779189042493, −17.74095729215255639128039610725, −14.80976008223161529741057830248, −14.28036333110262779137993025988, −12.80579314586801838878171470279, −9.578739638157912096536922881757, −8.053295773867489441672942657162, −4.58968133485545444703984261478, −2.45800016280688572336685159833, 2.45800016280688572336685159833, 4.58968133485545444703984261478, 8.053295773867489441672942657162, 9.578739638157912096536922881757, 12.80579314586801838878171470279, 14.28036333110262779137993025988, 14.80976008223161529741057830248, 17.74095729215255639128039610725, 19.36569272444477353779189042493, 20.90614686498054961947325615198

Graph of the $Z$-function along the critical line