Properties

Label 2-4998-1.1-c1-0-16
Degree $2$
Conductor $4998$
Sign $1$
Analytic cond. $39.9092$
Root an. cond. $6.31737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 2·11-s − 12-s + 13-s − 15-s + 16-s + 17-s − 18-s + 4·19-s + 20-s + 2·22-s + 8·23-s + 24-s − 4·25-s − 26-s − 27-s + 3·29-s + 30-s − 3·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.603·11-s − 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.426·22-s + 1.66·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s − 0.192·27-s + 0.557·29-s + 0.182·30-s − 0.538·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4998\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(39.9092\)
Root analytic conductor: \(6.31737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{4998} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.197458600\)
\(L(\frac12)\) \(\approx\) \(1.197458600\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 \)
17 \( 1 - T \)
good5 \( 1 - T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 11 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.203372130862587077556745649131, −7.54204361900201852382451429421, −6.86665791470700250919779761509, −6.13773336107594627222344609905, −5.39731027238560092165564516972, −4.83203717801140074861183066243, −3.56770037768586370273861245152, −2.73259154448507135582049623379, −1.65708709121297235432877512151, −0.70895499341637640511884680221, 0.70895499341637640511884680221, 1.65708709121297235432877512151, 2.73259154448507135582049623379, 3.56770037768586370273861245152, 4.83203717801140074861183066243, 5.39731027238560092165564516972, 6.13773336107594627222344609905, 6.86665791470700250919779761509, 7.54204361900201852382451429421, 8.203372130862587077556745649131

Graph of the $Z$-function along the critical line