Properties

Label 2-4950-1.1-c1-0-60
Degree $2$
Conductor $4950$
Sign $-1$
Analytic cond. $39.5259$
Root an. cond. $6.28696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2.37·7-s − 8-s + 11-s − 2·13-s − 2.37·14-s + 16-s − 4.37·17-s + 6.37·19-s − 22-s − 8.74·23-s + 2·26-s + 2.37·28-s + 4.37·29-s − 2.37·31-s − 32-s + 4.37·34-s − 3.62·37-s − 6.37·38-s − 11.4·41-s + 4·43-s + 44-s + 8.74·46-s − 8.74·47-s − 1.37·49-s − 2·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.896·7-s − 0.353·8-s + 0.301·11-s − 0.554·13-s − 0.634·14-s + 0.250·16-s − 1.06·17-s + 1.46·19-s − 0.213·22-s − 1.82·23-s + 0.392·26-s + 0.448·28-s + 0.811·29-s − 0.426·31-s − 0.176·32-s + 0.749·34-s − 0.596·37-s − 1.03·38-s − 1.79·41-s + 0.609·43-s + 0.150·44-s + 1.28·46-s − 1.27·47-s − 0.196·49-s − 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4950\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(39.5259\)
Root analytic conductor: \(6.28696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 2.37T + 7T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 4.37T + 17T^{2} \)
19 \( 1 - 6.37T + 19T^{2} \)
23 \( 1 + 8.74T + 23T^{2} \)
29 \( 1 - 4.37T + 29T^{2} \)
31 \( 1 + 2.37T + 31T^{2} \)
37 \( 1 + 3.62T + 37T^{2} \)
41 \( 1 + 11.4T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 8.74T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 + 8.74T + 59T^{2} \)
61 \( 1 - 0.372T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 - 7.11T + 71T^{2} \)
73 \( 1 + 7.48T + 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 - 8.74T + 83T^{2} \)
89 \( 1 + 4.37T + 89T^{2} \)
97 \( 1 - 1.25T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.017637585006348520227328644935, −7.27710101114682377490844291281, −6.66380799495427026102804544071, −5.74760645779859951798545448350, −4.98441891198832452769047333050, −4.19712402740535266970959542782, −3.16879138609288381824344005953, −2.12449234460290937536210726977, −1.41439500488856941593153725874, 0, 1.41439500488856941593153725874, 2.12449234460290937536210726977, 3.16879138609288381824344005953, 4.19712402740535266970959542782, 4.98441891198832452769047333050, 5.74760645779859951798545448350, 6.66380799495427026102804544071, 7.27710101114682377490844291281, 8.017637585006348520227328644935

Graph of the $Z$-function along the critical line