Properties

Label 2-4950-1.1-c1-0-47
Degree $2$
Conductor $4950$
Sign $-1$
Analytic cond. $39.5259$
Root an. cond. $6.28696$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3.37·7-s − 8-s + 11-s − 2·13-s + 3.37·14-s + 16-s + 1.37·17-s + 0.627·19-s − 22-s + 2.74·23-s + 2·26-s − 3.37·28-s − 1.37·29-s + 3.37·31-s − 32-s − 1.37·34-s − 9.37·37-s − 0.627·38-s + 11.4·41-s + 4·43-s + 44-s − 2.74·46-s + 2.74·47-s + 4.37·49-s − 2·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.27·7-s − 0.353·8-s + 0.301·11-s − 0.554·13-s + 0.901·14-s + 0.250·16-s + 0.332·17-s + 0.144·19-s − 0.213·22-s + 0.572·23-s + 0.392·26-s − 0.637·28-s − 0.254·29-s + 0.605·31-s − 0.176·32-s − 0.235·34-s − 1.54·37-s − 0.101·38-s + 1.79·41-s + 0.609·43-s + 0.150·44-s − 0.404·46-s + 0.400·47-s + 0.624·49-s − 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4950\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(39.5259\)
Root analytic conductor: \(6.28696\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + 3.37T + 7T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 - 1.37T + 17T^{2} \)
19 \( 1 - 0.627T + 19T^{2} \)
23 \( 1 - 2.74T + 23T^{2} \)
29 \( 1 + 1.37T + 29T^{2} \)
31 \( 1 - 3.37T + 31T^{2} \)
37 \( 1 + 9.37T + 37T^{2} \)
41 \( 1 - 11.4T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 2.74T + 47T^{2} \)
53 \( 1 + 4.11T + 53T^{2} \)
59 \( 1 - 2.74T + 59T^{2} \)
61 \( 1 + 5.37T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 - 15.4T + 73T^{2} \)
79 \( 1 + 1.25T + 79T^{2} \)
83 \( 1 + 2.74T + 83T^{2} \)
89 \( 1 - 1.37T + 89T^{2} \)
97 \( 1 - 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79294763549993325217619808678, −7.26103110883045301954338705360, −6.53832530644259488053929343841, −5.95602454770431659440922950217, −5.05554384694337290805841813534, −3.97151016297051327878671560357, −3.14533124261814314153039276429, −2.43455653025072204342386265506, −1.16253671815266753101452741456, 0, 1.16253671815266753101452741456, 2.43455653025072204342386265506, 3.14533124261814314153039276429, 3.97151016297051327878671560357, 5.05554384694337290805841813534, 5.95602454770431659440922950217, 6.53832530644259488053929343841, 7.26103110883045301954338705360, 7.79294763549993325217619808678

Graph of the $Z$-function along the critical line