L(s) = 1 | − 2i·4-s + (−1.65 − 1.5i)5-s − 3.31·11-s − 4·16-s + (−3 + 3.31i)20-s + (−2.84 − 2.84i)23-s + (0.5 + 4.97i)25-s − 9.94·31-s + (1.47 − 1.47i)37-s + 6.63i·44-s + (9.31 − 9.31i)47-s − 7i·49-s + (−3.63 − 3.63i)53-s + (5.5 + 4.97i)55-s − 3.31i·59-s + ⋯ |
L(s) = 1 | − i·4-s + (−0.741 − 0.670i)5-s − 1.00·11-s − 16-s + (−0.670 + 0.741i)20-s + (−0.592 − 0.592i)23-s + (0.100 + 0.994i)25-s − 1.78·31-s + (0.242 − 0.242i)37-s + 1.00i·44-s + (1.35 − 1.35i)47-s − i·49-s + (−0.499 − 0.499i)53-s + (0.741 + 0.670i)55-s − 0.431i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.960 + 0.278i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.960 + 0.278i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0910265 - 0.641507i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0910265 - 0.641507i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.65 + 1.5i)T \) |
| 11 | \( 1 + 3.31T \) |
good | 2 | \( 1 + 2iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 13 | \( 1 - 13iT^{2} \) |
| 17 | \( 1 + 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (2.84 + 2.84i)T + 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 9.94T + 31T^{2} \) |
| 37 | \( 1 + (-1.47 + 1.47i)T - 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + (-9.31 + 9.31i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.63 + 3.63i)T + 53iT^{2} \) |
| 59 | \( 1 + 3.31iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (-11.4 + 11.4i)T - 67iT^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 - 9iT - 89T^{2} \) |
| 97 | \( 1 + (3.52 - 3.52i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61487623734222731368939366905, −9.679892057795314060469202134481, −8.780980871958665361482168744964, −7.889812421802828281950861730757, −6.88760561470218143496508899027, −5.61177083109721757128607903966, −4.96966564952909587647106592625, −3.80130001666780003834059531876, −2.07804869394233231739161269503, −0.37048664922876438918029661543,
2.49581096514771664488724975540, 3.47405031030584550676182254106, 4.42667115387506240720446252366, 5.81890170407889759323750397280, 7.15272354519761523863634944298, 7.64815083755940574382124367817, 8.437261427138818851199041521544, 9.533139802330753181566372660677, 10.73574870516769500610637609096, 11.27421629407851016249155192694