L(s) = 1 | + 2i·4-s + (−1.65 + 1.5i)5-s − 3.31·11-s − 4·16-s + (−3 − 3.31i)20-s + (−2.84 + 2.84i)23-s + (0.5 − 4.97i)25-s − 9.94·31-s + (1.47 + 1.47i)37-s − 6.63i·44-s + (9.31 + 9.31i)47-s + 7i·49-s + (−3.63 + 3.63i)53-s + (5.5 − 4.97i)55-s + 3.31i·59-s + ⋯ |
L(s) = 1 | + i·4-s + (−0.741 + 0.670i)5-s − 1.00·11-s − 16-s + (−0.670 − 0.741i)20-s + (−0.592 + 0.592i)23-s + (0.100 − 0.994i)25-s − 1.78·31-s + (0.242 + 0.242i)37-s − 1.00i·44-s + (1.35 + 1.35i)47-s + i·49-s + (−0.499 + 0.499i)53-s + (0.741 − 0.670i)55-s + 0.431i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.960 - 0.278i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.960 - 0.278i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0910265 + 0.641507i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0910265 + 0.641507i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.65 - 1.5i)T \) |
| 11 | \( 1 + 3.31T \) |
good | 2 | \( 1 - 2iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 13 | \( 1 + 13iT^{2} \) |
| 17 | \( 1 - 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (2.84 - 2.84i)T - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 9.94T + 31T^{2} \) |
| 37 | \( 1 + (-1.47 - 1.47i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 + (-9.31 - 9.31i)T + 47iT^{2} \) |
| 53 | \( 1 + (3.63 - 3.63i)T - 53iT^{2} \) |
| 59 | \( 1 - 3.31iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (-11.4 - 11.4i)T + 67iT^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 + 9iT - 89T^{2} \) |
| 97 | \( 1 + (3.52 + 3.52i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27421629407851016249155192694, −10.73574870516769500610637609096, −9.533139802330753181566372660677, −8.437261427138818851199041521544, −7.64815083755940574382124367817, −7.15272354519761523863634944298, −5.81890170407889759323750397280, −4.42667115387506240720446252366, −3.47405031030584550676182254106, −2.49581096514771664488724975540,
0.37048664922876438918029661543, 2.07804869394233231739161269503, 3.80130001666780003834059531876, 4.96966564952909587647106592625, 5.61177083109721757128607903966, 6.88760561470218143496508899027, 7.889812421802828281950861730757, 8.780980871958665361482168744964, 9.679892057795314060469202134481, 10.61487623734222731368939366905