L(s) = 1 | + 2i·4-s + (1.65 + 1.5i)5-s + 3.31·11-s − 4·16-s + (−3 + 3.31i)20-s + (−6.15 + 6.15i)23-s + (0.5 + 4.97i)25-s + 9.94·31-s + (−8.47 − 8.47i)37-s + 6.63i·44-s + (2.68 + 2.68i)47-s + 7i·49-s + (9.63 − 9.63i)53-s + (5.5 + 4.97i)55-s − 3.31i·59-s + ⋯ |
L(s) = 1 | + i·4-s + (0.741 + 0.670i)5-s + 1.00·11-s − 16-s + (−0.670 + 0.741i)20-s + (−1.28 + 1.28i)23-s + (0.100 + 0.994i)25-s + 1.78·31-s + (−1.39 − 1.39i)37-s + 1.00i·44-s + (0.391 + 0.391i)47-s + i·49-s + (1.32 − 1.32i)53-s + (0.741 + 0.670i)55-s − 0.431i·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.180 - 0.983i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.180 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22927 + 1.02396i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22927 + 1.02396i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.65 - 1.5i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 - 2iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 13 | \( 1 + 13iT^{2} \) |
| 17 | \( 1 - 17iT^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (6.15 - 6.15i)T - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 9.94T + 31T^{2} \) |
| 37 | \( 1 + (8.47 + 8.47i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 + (-2.68 - 2.68i)T + 47iT^{2} \) |
| 53 | \( 1 + (-9.63 + 9.63i)T - 53iT^{2} \) |
| 59 | \( 1 + 3.31iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (-1.52 - 1.52i)T + 67iT^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83iT^{2} \) |
| 89 | \( 1 + 9iT - 89T^{2} \) |
| 97 | \( 1 + (13.4 + 13.4i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.29980799376889689886901262795, −10.16728987018481317876101452606, −9.384259518805435182276973509535, −8.474350129962873310597636566630, −7.42377249847246443719676892318, −6.65376058647720259342819785698, −5.68587382440119764255050413021, −4.17935379818873751739239735387, −3.24671931664923696691218546011, −1.97773268211154975998856887080,
1.05182651121211243436205258059, 2.27457280885841277135217566197, 4.20029597274579801027974039225, 5.10550727424362354083474764831, 6.14999519712168288598715564797, 6.69540845508282376977708910248, 8.356833277586075117190941220507, 9.023333709938057754468999631370, 10.02568575635188047763248188206, 10.37838596890461048907584965096