Properties

Label 2-495-1.1-c5-0-8
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $79.3899$
Root an. cond. $8.91010$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.47·2-s − 11.9·4-s − 25·5-s − 168.·7-s − 196.·8-s − 111.·10-s − 121·11-s + 290.·13-s − 756.·14-s − 499.·16-s − 623.·17-s − 398.·19-s + 298.·20-s − 541.·22-s − 3.78e3·23-s + 625·25-s + 1.30e3·26-s + 2.01e3·28-s − 4.22e3·29-s − 5.59e3·31-s + 4.06e3·32-s − 2.79e3·34-s + 4.22e3·35-s + 301.·37-s − 1.78e3·38-s + 4.92e3·40-s + 1.46e4·41-s + ⋯
L(s)  = 1  + 0.791·2-s − 0.373·4-s − 0.447·5-s − 1.30·7-s − 1.08·8-s − 0.354·10-s − 0.301·11-s + 0.476·13-s − 1.03·14-s − 0.487·16-s − 0.523·17-s − 0.253·19-s + 0.166·20-s − 0.238·22-s − 1.49·23-s + 0.200·25-s + 0.377·26-s + 0.485·28-s − 0.931·29-s − 1.04·31-s + 0.701·32-s − 0.414·34-s + 0.582·35-s + 0.0361·37-s − 0.200·38-s + 0.486·40-s + 1.35·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(79.3899\)
Root analytic conductor: \(8.91010\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9397048055\)
\(L(\frac12)\) \(\approx\) \(0.9397048055\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 25T \)
11 \( 1 + 121T \)
good2 \( 1 - 4.47T + 32T^{2} \)
7 \( 1 + 168.T + 1.68e4T^{2} \)
13 \( 1 - 290.T + 3.71e5T^{2} \)
17 \( 1 + 623.T + 1.41e6T^{2} \)
19 \( 1 + 398.T + 2.47e6T^{2} \)
23 \( 1 + 3.78e3T + 6.43e6T^{2} \)
29 \( 1 + 4.22e3T + 2.05e7T^{2} \)
31 \( 1 + 5.59e3T + 2.86e7T^{2} \)
37 \( 1 - 301.T + 6.93e7T^{2} \)
41 \( 1 - 1.46e4T + 1.15e8T^{2} \)
43 \( 1 - 151.T + 1.47e8T^{2} \)
47 \( 1 - 1.35e4T + 2.29e8T^{2} \)
53 \( 1 - 1.81e4T + 4.18e8T^{2} \)
59 \( 1 - 5.05e4T + 7.14e8T^{2} \)
61 \( 1 - 5.98e3T + 8.44e8T^{2} \)
67 \( 1 - 2.24e4T + 1.35e9T^{2} \)
71 \( 1 + 1.00e4T + 1.80e9T^{2} \)
73 \( 1 + 476.T + 2.07e9T^{2} \)
79 \( 1 + 8.50e4T + 3.07e9T^{2} \)
83 \( 1 - 2.56e4T + 3.93e9T^{2} \)
89 \( 1 + 1.80e3T + 5.58e9T^{2} \)
97 \( 1 - 1.16e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08592627108862619270163812350, −9.269476613241301255521228839187, −8.464889724283013750176615172997, −7.26348860449073221158937344518, −6.19709274246448217644256634064, −5.52667564638945336117210039116, −4.12834240531880298761248803484, −3.65106973807353494712077878195, −2.44750071205673160746341924653, −0.41210886374434186777067571915, 0.41210886374434186777067571915, 2.44750071205673160746341924653, 3.65106973807353494712077878195, 4.12834240531880298761248803484, 5.52667564638945336117210039116, 6.19709274246448217644256634064, 7.26348860449073221158937344518, 8.464889724283013750176615172997, 9.269476613241301255521228839187, 10.08592627108862619270163812350

Graph of the $Z$-function along the critical line