Properties

Label 2-495-1.1-c3-0-28
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $29.2059$
Root an. cond. $5.40425$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.32·2-s + 10.7·4-s + 5·5-s − 6.68·7-s + 11.8·8-s + 21.6·10-s + 11·11-s + 59.6·13-s − 28.9·14-s − 34.5·16-s + 131.·17-s + 52.1·19-s + 53.7·20-s + 47.6·22-s − 15.3·23-s + 25·25-s + 258.·26-s − 71.8·28-s + 59.6·29-s + 229.·31-s − 244.·32-s + 569.·34-s − 33.4·35-s − 241.·37-s + 225.·38-s + 59.3·40-s + 196.·41-s + ⋯
L(s)  = 1  + 1.53·2-s + 1.34·4-s + 0.447·5-s − 0.360·7-s + 0.524·8-s + 0.684·10-s + 0.301·11-s + 1.27·13-s − 0.552·14-s − 0.539·16-s + 1.87·17-s + 0.629·19-s + 0.600·20-s + 0.461·22-s − 0.139·23-s + 0.200·25-s + 1.94·26-s − 0.484·28-s + 0.382·29-s + 1.32·31-s − 1.35·32-s + 2.87·34-s − 0.161·35-s − 1.07·37-s + 0.962·38-s + 0.234·40-s + 0.749·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(29.2059\)
Root analytic conductor: \(5.40425\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.269621099\)
\(L(\frac12)\) \(\approx\) \(5.269621099\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 4.32T + 8T^{2} \)
7 \( 1 + 6.68T + 343T^{2} \)
13 \( 1 - 59.6T + 2.19e3T^{2} \)
17 \( 1 - 131.T + 4.91e3T^{2} \)
19 \( 1 - 52.1T + 6.85e3T^{2} \)
23 \( 1 + 15.3T + 1.21e4T^{2} \)
29 \( 1 - 59.6T + 2.43e4T^{2} \)
31 \( 1 - 229.T + 2.97e4T^{2} \)
37 \( 1 + 241.T + 5.06e4T^{2} \)
41 \( 1 - 196.T + 6.89e4T^{2} \)
43 \( 1 + 195.T + 7.95e4T^{2} \)
47 \( 1 - 517.T + 1.03e5T^{2} \)
53 \( 1 + 306.T + 1.48e5T^{2} \)
59 \( 1 + 763.T + 2.05e5T^{2} \)
61 \( 1 - 269.T + 2.26e5T^{2} \)
67 \( 1 + 895.T + 3.00e5T^{2} \)
71 \( 1 + 855.T + 3.57e5T^{2} \)
73 \( 1 - 391.T + 3.89e5T^{2} \)
79 \( 1 - 829.T + 4.93e5T^{2} \)
83 \( 1 + 939.T + 5.71e5T^{2} \)
89 \( 1 - 412.T + 7.04e5T^{2} \)
97 \( 1 - 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71791092179487365379840913958, −9.807214377160078191333204561975, −8.765212219810799428291640706725, −7.53386075504684776083174707759, −6.32110383550839812029051493659, −5.85137751145547955940882992079, −4.84354051232063507586080016142, −3.65041079932563233381628322907, −2.96459595392755470193797719679, −1.30324663555597406655013391565, 1.30324663555597406655013391565, 2.96459595392755470193797719679, 3.65041079932563233381628322907, 4.84354051232063507586080016142, 5.85137751145547955940882992079, 6.32110383550839812029051493659, 7.53386075504684776083174707759, 8.765212219810799428291640706725, 9.807214377160078191333204561975, 10.71791092179487365379840913958

Graph of the $Z$-function along the critical line