Properties

Label 2-495-1.1-c3-0-23
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $29.2059$
Root an. cond. $5.40425$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.30·2-s − 2.69·4-s + 5·5-s + 33.7·7-s − 24.6·8-s + 11.5·10-s + 11·11-s + 37.9·13-s + 77.6·14-s − 35.1·16-s − 44.2·17-s − 42.3·19-s − 13.4·20-s + 25.3·22-s + 30.6·23-s + 25·25-s + 87.2·26-s − 90.9·28-s + 194.·29-s − 82.9·31-s + 116.·32-s − 101.·34-s + 168.·35-s + 445.·37-s − 97.6·38-s − 123.·40-s + 206.·41-s + ⋯
L(s)  = 1  + 0.814·2-s − 0.337·4-s + 0.447·5-s + 1.82·7-s − 1.08·8-s + 0.364·10-s + 0.301·11-s + 0.808·13-s + 1.48·14-s − 0.548·16-s − 0.631·17-s − 0.511·19-s − 0.150·20-s + 0.245·22-s + 0.278·23-s + 0.200·25-s + 0.658·26-s − 0.614·28-s + 1.24·29-s − 0.480·31-s + 0.641·32-s − 0.514·34-s + 0.814·35-s + 1.97·37-s − 0.416·38-s − 0.486·40-s + 0.785·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(29.2059\)
Root analytic conductor: \(5.40425\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.446204822\)
\(L(\frac12)\) \(\approx\) \(3.446204822\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 2.30T + 8T^{2} \)
7 \( 1 - 33.7T + 343T^{2} \)
13 \( 1 - 37.9T + 2.19e3T^{2} \)
17 \( 1 + 44.2T + 4.91e3T^{2} \)
19 \( 1 + 42.3T + 6.85e3T^{2} \)
23 \( 1 - 30.6T + 1.21e4T^{2} \)
29 \( 1 - 194.T + 2.43e4T^{2} \)
31 \( 1 + 82.9T + 2.97e4T^{2} \)
37 \( 1 - 445.T + 5.06e4T^{2} \)
41 \( 1 - 206.T + 6.89e4T^{2} \)
43 \( 1 - 197.T + 7.95e4T^{2} \)
47 \( 1 + 275.T + 1.03e5T^{2} \)
53 \( 1 + 382.T + 1.48e5T^{2} \)
59 \( 1 - 771.T + 2.05e5T^{2} \)
61 \( 1 + 210.T + 2.26e5T^{2} \)
67 \( 1 - 452.T + 3.00e5T^{2} \)
71 \( 1 + 310.T + 3.57e5T^{2} \)
73 \( 1 + 174.T + 3.89e5T^{2} \)
79 \( 1 - 1.19e3T + 4.93e5T^{2} \)
83 \( 1 + 183.T + 5.71e5T^{2} \)
89 \( 1 + 613.T + 7.04e5T^{2} \)
97 \( 1 + 1.20e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89249386386112982429566457474, −9.536896115982664210555517395144, −8.646912713165241223533809141844, −8.020525354473909591309746658994, −6.55986353452261464002826945661, −5.63734274543036230687894354025, −4.71082433696483487810472430694, −4.07765733899993420692032777261, −2.49467747302187274090527518882, −1.13331571675258912952629822089, 1.13331571675258912952629822089, 2.49467747302187274090527518882, 4.07765733899993420692032777261, 4.71082433696483487810472430694, 5.63734274543036230687894354025, 6.55986353452261464002826945661, 8.020525354473909591309746658994, 8.646912713165241223533809141844, 9.536896115982664210555517395144, 10.89249386386112982429566457474

Graph of the $Z$-function along the critical line