Properties

Label 2-495-1.1-c3-0-19
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $29.2059$
Root an. cond. $5.40425$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82·2-s − 0.0470·4-s − 5·5-s − 7.12·7-s − 22.6·8-s − 14.1·10-s + 11·11-s + 66.8·13-s − 20.0·14-s − 63.6·16-s + 40.9·17-s + 4.85·19-s + 0.235·20-s + 31.0·22-s + 128.·23-s + 25·25-s + 188.·26-s + 0.335·28-s + 224.·29-s − 267.·31-s + 2.13·32-s + 115.·34-s + 35.6·35-s + 418.·37-s + 13.6·38-s + 113.·40-s + 496.·41-s + ⋯
L(s)  = 1  + 0.997·2-s − 0.00588·4-s − 0.447·5-s − 0.384·7-s − 1.00·8-s − 0.445·10-s + 0.301·11-s + 1.42·13-s − 0.383·14-s − 0.994·16-s + 0.583·17-s + 0.0585·19-s + 0.00263·20-s + 0.300·22-s + 1.16·23-s + 0.200·25-s + 1.42·26-s + 0.00226·28-s + 1.43·29-s − 1.54·31-s + 0.0117·32-s + 0.581·34-s + 0.172·35-s + 1.85·37-s + 0.0584·38-s + 0.448·40-s + 1.89·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(29.2059\)
Root analytic conductor: \(5.40425\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.627997698\)
\(L(\frac12)\) \(\approx\) \(2.627997698\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 2.82T + 8T^{2} \)
7 \( 1 + 7.12T + 343T^{2} \)
13 \( 1 - 66.8T + 2.19e3T^{2} \)
17 \( 1 - 40.9T + 4.91e3T^{2} \)
19 \( 1 - 4.85T + 6.85e3T^{2} \)
23 \( 1 - 128.T + 1.21e4T^{2} \)
29 \( 1 - 224.T + 2.43e4T^{2} \)
31 \( 1 + 267.T + 2.97e4T^{2} \)
37 \( 1 - 418.T + 5.06e4T^{2} \)
41 \( 1 - 496.T + 6.89e4T^{2} \)
43 \( 1 + 90.9T + 7.95e4T^{2} \)
47 \( 1 - 203.T + 1.03e5T^{2} \)
53 \( 1 + 219.T + 1.48e5T^{2} \)
59 \( 1 + 585.T + 2.05e5T^{2} \)
61 \( 1 - 156.T + 2.26e5T^{2} \)
67 \( 1 + 638.T + 3.00e5T^{2} \)
71 \( 1 - 961.T + 3.57e5T^{2} \)
73 \( 1 - 223.T + 3.89e5T^{2} \)
79 \( 1 - 415.T + 4.93e5T^{2} \)
83 \( 1 + 44.7T + 5.71e5T^{2} \)
89 \( 1 + 809.T + 7.04e5T^{2} \)
97 \( 1 + 429.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85609212566196742683817734398, −9.493975704129457595656382946240, −8.834167681530892621321917348174, −7.77303228029152404787664574944, −6.51511963292043746976707037569, −5.82003480506397815143996485927, −4.67016657804336166230312374776, −3.75710170207658300263048062688, −2.95182482709861189267656713869, −0.901689433764295354977161719104, 0.901689433764295354977161719104, 2.95182482709861189267656713869, 3.75710170207658300263048062688, 4.67016657804336166230312374776, 5.82003480506397815143996485927, 6.51511963292043746976707037569, 7.77303228029152404787664574944, 8.834167681530892621321917348174, 9.493975704129457595656382946240, 10.85609212566196742683817734398

Graph of the $Z$-function along the critical line