Properties

Label 2-495-1.1-c3-0-12
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $29.2059$
Root an. cond. $5.40425$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.43·2-s − 5.94·4-s + 5·5-s − 23.1·7-s − 19.9·8-s + 7.17·10-s + 11·11-s − 85.3·13-s − 33.1·14-s + 18.8·16-s + 109.·17-s + 121.·19-s − 29.7·20-s + 15.7·22-s + 171.·23-s + 25·25-s − 122.·26-s + 137.·28-s + 80.1·29-s − 255.·31-s + 187.·32-s + 156.·34-s − 115.·35-s + 103.·37-s + 174.·38-s − 99.9·40-s − 194.·41-s + ⋯
L(s)  = 1  + 0.507·2-s − 0.742·4-s + 0.447·5-s − 1.24·7-s − 0.883·8-s + 0.226·10-s + 0.301·11-s − 1.82·13-s − 0.632·14-s + 0.294·16-s + 1.55·17-s + 1.46·19-s − 0.332·20-s + 0.152·22-s + 1.55·23-s + 0.200·25-s − 0.923·26-s + 0.926·28-s + 0.513·29-s − 1.47·31-s + 1.03·32-s + 0.789·34-s − 0.557·35-s + 0.460·37-s + 0.743·38-s − 0.395·40-s − 0.741·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(29.2059\)
Root analytic conductor: \(5.40425\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.677517850\)
\(L(\frac12)\) \(\approx\) \(1.677517850\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 1.43T + 8T^{2} \)
7 \( 1 + 23.1T + 343T^{2} \)
13 \( 1 + 85.3T + 2.19e3T^{2} \)
17 \( 1 - 109.T + 4.91e3T^{2} \)
19 \( 1 - 121.T + 6.85e3T^{2} \)
23 \( 1 - 171.T + 1.21e4T^{2} \)
29 \( 1 - 80.1T + 2.43e4T^{2} \)
31 \( 1 + 255.T + 2.97e4T^{2} \)
37 \( 1 - 103.T + 5.06e4T^{2} \)
41 \( 1 + 194.T + 6.89e4T^{2} \)
43 \( 1 - 434.T + 7.95e4T^{2} \)
47 \( 1 + 459.T + 1.03e5T^{2} \)
53 \( 1 - 656.T + 1.48e5T^{2} \)
59 \( 1 + 158.T + 2.05e5T^{2} \)
61 \( 1 - 107.T + 2.26e5T^{2} \)
67 \( 1 - 685.T + 3.00e5T^{2} \)
71 \( 1 - 671.T + 3.57e5T^{2} \)
73 \( 1 + 260.T + 3.89e5T^{2} \)
79 \( 1 - 361.T + 4.93e5T^{2} \)
83 \( 1 - 706.T + 5.71e5T^{2} \)
89 \( 1 + 557.T + 7.04e5T^{2} \)
97 \( 1 - 482.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16902861205828707539026681730, −9.597841876156844087900740509012, −9.157330393058536025024612876081, −7.65873681140022787171825107164, −6.79808802252375812300487166897, −5.54605089910991316104142476394, −5.04499595334963064646950193070, −3.56403289830753289965216662070, −2.82863176035414382923284159853, −0.74617468037257595814509702962, 0.74617468037257595814509702962, 2.82863176035414382923284159853, 3.56403289830753289965216662070, 5.04499595334963064646950193070, 5.54605089910991316104142476394, 6.79808802252375812300487166897, 7.65873681140022787171825107164, 9.157330393058536025024612876081, 9.597841876156844087900740509012, 10.16902861205828707539026681730

Graph of the $Z$-function along the critical line