Properties

Label 2-495-1.1-c3-0-10
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $29.2059$
Root an. cond. $5.40425$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.607·2-s − 7.63·4-s − 5·5-s + 8.95·7-s − 9.49·8-s − 3.03·10-s + 11·11-s − 0.460·13-s + 5.43·14-s + 55.2·16-s − 128.·17-s − 0.0245·19-s + 38.1·20-s + 6.67·22-s − 171.·23-s + 25·25-s − 0.279·26-s − 68.3·28-s + 226.·29-s + 195.·31-s + 109.·32-s − 77.9·34-s − 44.7·35-s + 338.·37-s − 0.0149·38-s + 47.4·40-s − 136.·41-s + ⋯
L(s)  = 1  + 0.214·2-s − 0.953·4-s − 0.447·5-s + 0.483·7-s − 0.419·8-s − 0.0960·10-s + 0.301·11-s − 0.00982·13-s + 0.103·14-s + 0.863·16-s − 1.83·17-s − 0.000296·19-s + 0.426·20-s + 0.0647·22-s − 1.55·23-s + 0.200·25-s − 0.00210·26-s − 0.461·28-s + 1.45·29-s + 1.13·31-s + 0.604·32-s − 0.393·34-s − 0.216·35-s + 1.50·37-s − 6.37e − 5·38-s + 0.187·40-s − 0.521·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(29.2059\)
Root analytic conductor: \(5.40425\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.369649616\)
\(L(\frac12)\) \(\approx\) \(1.369649616\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 0.607T + 8T^{2} \)
7 \( 1 - 8.95T + 343T^{2} \)
13 \( 1 + 0.460T + 2.19e3T^{2} \)
17 \( 1 + 128.T + 4.91e3T^{2} \)
19 \( 1 + 0.0245T + 6.85e3T^{2} \)
23 \( 1 + 171.T + 1.21e4T^{2} \)
29 \( 1 - 226.T + 2.43e4T^{2} \)
31 \( 1 - 195.T + 2.97e4T^{2} \)
37 \( 1 - 338.T + 5.06e4T^{2} \)
41 \( 1 + 136.T + 6.89e4T^{2} \)
43 \( 1 - 336.T + 7.95e4T^{2} \)
47 \( 1 - 540.T + 1.03e5T^{2} \)
53 \( 1 - 622.T + 1.48e5T^{2} \)
59 \( 1 - 9.86T + 2.05e5T^{2} \)
61 \( 1 - 902.T + 2.26e5T^{2} \)
67 \( 1 - 146.T + 3.00e5T^{2} \)
71 \( 1 - 893.T + 3.57e5T^{2} \)
73 \( 1 + 1.14e3T + 3.89e5T^{2} \)
79 \( 1 + 459.T + 4.93e5T^{2} \)
83 \( 1 - 125.T + 5.71e5T^{2} \)
89 \( 1 + 150.T + 7.04e5T^{2} \)
97 \( 1 + 1.26e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51077584795064688855209587308, −9.589973765481652019236556982948, −8.591925547094893204402414074136, −8.121276013650797285026179413688, −6.80930888106957094921441430802, −5.76755780759137923603263040858, −4.46606958221167641800799077777, −4.13058111060786700180640580822, −2.49386187125924133385062087394, −0.70836904875813104422309919805, 0.70836904875813104422309919805, 2.49386187125924133385062087394, 4.13058111060786700180640580822, 4.46606958221167641800799077777, 5.76755780759137923603263040858, 6.80930888106957094921441430802, 8.121276013650797285026179413688, 8.591925547094893204402414074136, 9.589973765481652019236556982948, 10.51077584795064688855209587308

Graph of the $Z$-function along the critical line