Properties

Label 2-490-7.2-c1-0-3
Degree $2$
Conductor $490$
Sign $0.968 - 0.250i$
Analytic cond. $3.91266$
Root an. cond. $1.97804$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s + 0.999·8-s + (1.5 − 2.59i)9-s + (−0.499 − 0.866i)10-s + (−2 − 3.46i)11-s + 6·13-s + (−0.5 + 0.866i)16-s + (1 + 1.73i)17-s + (1.5 + 2.59i)18-s + 0.999·20-s + 3.99·22-s + (−0.499 − 0.866i)25-s + (−3 + 5.19i)26-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s + 0.353·8-s + (0.5 − 0.866i)9-s + (−0.158 − 0.273i)10-s + (−0.603 − 1.04i)11-s + 1.66·13-s + (−0.125 + 0.216i)16-s + (0.242 + 0.420i)17-s + (0.353 + 0.612i)18-s + 0.223·20-s + 0.852·22-s + (−0.0999 − 0.173i)25-s + (−0.588 + 1.01i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $0.968 - 0.250i$
Analytic conductor: \(3.91266\)
Root analytic conductor: \(1.97804\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{490} (471, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 490,\ (\ :1/2),\ 0.968 - 0.250i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.17531 + 0.149774i\)
\(L(\frac12)\) \(\approx\) \(1.17531 + 0.149774i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
5 \( 1 + (0.5 - 0.866i)T \)
7 \( 1 \)
good3 \( 1 + (-1.5 + 2.59i)T^{2} \)
11 \( 1 + (2 + 3.46i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 - 6T + 13T^{2} \)
17 \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + (-4 - 6.92i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-5 + 8.66i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + (-4 + 6.92i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-1 - 1.73i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (4 + 6.92i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (7 - 12.1i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-6 - 10.3i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 16T + 71T^{2} \)
73 \( 1 + (-1 - 1.73i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + (-5 + 8.66i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76139131892337034215290023987, −10.21550282238924816162189280291, −8.890425400856893629885893266498, −8.431652828118773300063315476581, −7.33803698449132475482490186730, −6.33986460037127327226140026893, −5.75040355798917216948881540916, −4.18418482461229828180603917816, −3.16563083441900853027794010464, −1.02043612726503043721379502445, 1.31546678517991833851215261671, 2.69194193851695474860010368735, 4.16244171021988846157080560592, 4.93459576263490344623743368010, 6.34215233745206491832720233826, 7.68069825620743439231099936605, 8.159904773946499751384773782109, 9.273618253358299557322270729048, 10.13489758514894369194710698770, 10.84055637465955460928553764854

Graph of the $Z$-function along the critical line