L(s) = 1 | − i·2-s − 2.44i·3-s − 4-s + (−2.22 + 0.224i)5-s − 2.44·6-s + i·8-s − 2.99·9-s + (0.224 + 2.22i)10-s − 4.89·11-s + 2.44i·12-s + 4.44i·13-s + (0.550 + 5.44i)15-s + 16-s − 2i·17-s + 2.99i·18-s + 1.55·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.41i·3-s − 0.5·4-s + (−0.994 + 0.100i)5-s − 0.999·6-s + 0.353i·8-s − 0.999·9-s + (0.0710 + 0.703i)10-s − 1.47·11-s + 0.707i·12-s + 1.23i·13-s + (0.142 + 1.40i)15-s + 0.250·16-s − 0.485i·17-s + 0.707i·18-s + 0.355·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.100 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.167912 + 0.185730i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.167912 + 0.185730i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (2.22 - 0.224i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 2.44iT - 3T^{2} \) |
| 11 | \( 1 + 4.89T + 11T^{2} \) |
| 13 | \( 1 - 4.44iT - 13T^{2} \) |
| 17 | \( 1 + 2iT - 17T^{2} \) |
| 19 | \( 1 - 1.55T + 19T^{2} \) |
| 23 | \( 1 + 2.89iT - 23T^{2} \) |
| 29 | \( 1 + 6.89T + 29T^{2} \) |
| 31 | \( 1 + 8.89T + 31T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 - 1.10T + 41T^{2} \) |
| 43 | \( 1 - 0.898iT - 43T^{2} \) |
| 47 | \( 1 + 8.89iT - 47T^{2} \) |
| 53 | \( 1 - 10.8iT - 53T^{2} \) |
| 59 | \( 1 + 1.55T + 59T^{2} \) |
| 61 | \( 1 + 3.55T + 61T^{2} \) |
| 67 | \( 1 + 8iT - 67T^{2} \) |
| 71 | \( 1 + 1.10T + 71T^{2} \) |
| 73 | \( 1 - 2.89iT - 73T^{2} \) |
| 79 | \( 1 + 6.89T + 79T^{2} \) |
| 83 | \( 1 + 2.44iT - 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + 15.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66861485390635776776617658260, −9.344252357857677015491667574804, −8.349279124572727444829616895450, −7.51815889447922875993865195530, −6.98123750148877122484900315025, −5.55708497476079867512183240825, −4.32038634891721982666113220059, −2.96662214029900634387563728569, −1.84470633503726856444628060390, −0.14652777064952203964227770508,
3.18489074925452591269683327485, 3.98861477662556925968682259245, 5.13906010295543071750474090957, 5.60063092209570976289119478499, 7.40291975097973064529502854162, 7.931335787965834452649465330584, 8.899527850273962194991611529882, 9.830570585529713895969043715605, 10.67293811695615672360656784282, 11.21019923032026601338348259803