L(s) = 1 | + (−0.707 − 0.707i)2-s + (−0.830 − 0.830i)3-s + 1.00i·4-s + (−2.05 − 0.880i)5-s + 1.17i·6-s + (0.707 − 0.707i)8-s − 1.62i·9-s + (0.830 + 2.07i)10-s + 0.743·11-s + (0.830 − 0.830i)12-s + (−2.05 − 2.05i)13-s + (0.975 + 2.43i)15-s − 1.00·16-s + (−4.63 + 4.63i)17-s + (−1.14 + 1.14i)18-s + 1.89·19-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (−0.479 − 0.479i)3-s + 0.500i·4-s + (−0.919 − 0.393i)5-s + 0.479i·6-s + (0.250 − 0.250i)8-s − 0.540i·9-s + (0.262 + 0.656i)10-s + 0.224·11-s + (0.239 − 0.239i)12-s + (−0.570 − 0.570i)13-s + (0.251 + 0.629i)15-s − 0.250·16-s + (−1.12 + 1.12i)17-s + (−0.270 + 0.270i)18-s + 0.434·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.218 - 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.218 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0209333 + 0.0261425i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0209333 + 0.0261425i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (2.05 + 0.880i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.830 + 0.830i)T + 3iT^{2} \) |
| 11 | \( 1 - 0.743T + 11T^{2} \) |
| 13 | \( 1 + (2.05 + 2.05i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.63 - 4.63i)T - 17iT^{2} \) |
| 19 | \( 1 - 1.89T + 19T^{2} \) |
| 23 | \( 1 + (3.74 - 3.74i)T - 23iT^{2} \) |
| 29 | \( 1 - 9.69iT - 29T^{2} \) |
| 31 | \( 1 + 3.42iT - 31T^{2} \) |
| 37 | \( 1 + (1.88 + 1.88i)T + 37iT^{2} \) |
| 41 | \( 1 - 0.817iT - 41T^{2} \) |
| 43 | \( 1 + (-1.59 + 1.59i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.33 - 3.33i)T - 47iT^{2} \) |
| 53 | \( 1 + (-3.52 + 3.52i)T - 53iT^{2} \) |
| 59 | \( 1 + 2.54T + 59T^{2} \) |
| 61 | \( 1 - 6.07iT - 61T^{2} \) |
| 67 | \( 1 + (9.68 + 9.68i)T + 67iT^{2} \) |
| 71 | \( 1 + 16.0T + 71T^{2} \) |
| 73 | \( 1 + (-6.25 - 6.25i)T + 73iT^{2} \) |
| 79 | \( 1 - 6.58iT - 79T^{2} \) |
| 83 | \( 1 + (9.23 + 9.23i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.03T + 89T^{2} \) |
| 97 | \( 1 + (3.16 - 3.16i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.31025357837085368796929675368, −10.50687868122622387034253750739, −9.353573595659171811595322024485, −8.593386326740474789108621143695, −7.63132488238807806647586184249, −6.86502167435205456924176400365, −5.65268436816456319144506323963, −4.30172540758865505681661260987, −3.29845559017632398583215677274, −1.50275644696088147352417613253,
0.02562902663432083958228799685, 2.46249042916843609400826222463, 4.22688579921651283834851925644, 4.88600618202249510950569970891, 6.22224167783721176580755769397, 7.13518050512361212645895542041, 7.892764686462358513723595871928, 8.891999643683342438238614634894, 9.880781347481200701308023200545, 10.63597066169897888567156964861