Properties

Label 2-490-1.1-c5-0-38
Degree $2$
Conductor $490$
Sign $-1$
Analytic cond. $78.5880$
Root an. cond. $8.86499$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 11·3-s + 16·4-s + 25·5-s + 44·6-s − 64·8-s − 122·9-s − 100·10-s + 83·11-s − 176·12-s + 83·13-s − 275·15-s + 256·16-s + 177·17-s + 488·18-s + 2.08e3·19-s + 400·20-s − 332·22-s − 3.17e3·23-s + 704·24-s + 625·25-s − 332·26-s + 4.01e3·27-s − 8.68e3·29-s + 1.10e3·30-s − 1.63e3·31-s − 1.02e3·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.705·3-s + 1/2·4-s + 0.447·5-s + 0.498·6-s − 0.353·8-s − 0.502·9-s − 0.316·10-s + 0.206·11-s − 0.352·12-s + 0.136·13-s − 0.315·15-s + 1/4·16-s + 0.148·17-s + 0.355·18-s + 1.32·19-s + 0.223·20-s − 0.146·22-s − 1.24·23-s + 0.249·24-s + 1/5·25-s − 0.0963·26-s + 1.05·27-s − 1.91·29-s + 0.223·30-s − 0.305·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(78.5880\)
Root analytic conductor: \(8.86499\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 490,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 - p^{2} T \)
7 \( 1 \)
good3 \( 1 + 11 T + p^{5} T^{2} \)
11 \( 1 - 83 T + p^{5} T^{2} \)
13 \( 1 - 83 T + p^{5} T^{2} \)
17 \( 1 - 177 T + p^{5} T^{2} \)
19 \( 1 - 2082 T + p^{5} T^{2} \)
23 \( 1 + 3170 T + p^{5} T^{2} \)
29 \( 1 + 8681 T + p^{5} T^{2} \)
31 \( 1 + 1636 T + p^{5} T^{2} \)
37 \( 1 - 4298 T + p^{5} T^{2} \)
41 \( 1 + 2356 T + p^{5} T^{2} \)
43 \( 1 - 8738 T + p^{5} T^{2} \)
47 \( 1 - 3641 T + p^{5} T^{2} \)
53 \( 1 - 33268 T + p^{5} T^{2} \)
59 \( 1 - 30968 T + p^{5} T^{2} \)
61 \( 1 + 4560 T + p^{5} T^{2} \)
67 \( 1 - 564 p T + p^{5} T^{2} \)
71 \( 1 + 59304 T + p^{5} T^{2} \)
73 \( 1 - 8910 T + p^{5} T^{2} \)
79 \( 1 - 27589 T + p^{5} T^{2} \)
83 \( 1 + 67676 T + p^{5} T^{2} \)
89 \( 1 + 10700 T + p^{5} T^{2} \)
97 \( 1 + 65075 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.718630732747844487443198797241, −8.980408896753061286752499122384, −7.917172008401726517592761551187, −7.00212003881103708446590166396, −5.88333025273338520444841795442, −5.41600106176275251608110304790, −3.78469759178805718868597049906, −2.42937699591590937688979161759, −1.17030980464259065978557420782, 0, 1.17030980464259065978557420782, 2.42937699591590937688979161759, 3.78469759178805718868597049906, 5.41600106176275251608110304790, 5.88333025273338520444841795442, 7.00212003881103708446590166396, 7.917172008401726517592761551187, 8.980408896753061286752499122384, 9.718630732747844487443198797241

Graph of the $Z$-function along the critical line