Properties

Label 2-490-1.1-c3-0-12
Degree $2$
Conductor $490$
Sign $-1$
Analytic cond. $28.9109$
Root an. cond. $5.37688$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 9.15·3-s + 4·4-s − 5·5-s + 18.3·6-s − 8·8-s + 56.7·9-s + 10·10-s − 35.7·11-s − 36.6·12-s − 67.4·13-s + 45.7·15-s + 16·16-s + 19.1·17-s − 113.·18-s + 86.6·19-s − 20·20-s + 71.5·22-s + 195.·23-s + 73.2·24-s + 25·25-s + 134.·26-s − 272.·27-s + 272.·29-s − 91.5·30-s − 21.6·31-s − 32·32-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.76·3-s + 0.5·4-s − 0.447·5-s + 1.24·6-s − 0.353·8-s + 2.10·9-s + 0.316·10-s − 0.980·11-s − 0.880·12-s − 1.43·13-s + 0.787·15-s + 0.250·16-s + 0.273·17-s − 1.48·18-s + 1.04·19-s − 0.223·20-s + 0.693·22-s + 1.76·23-s + 0.622·24-s + 0.200·25-s + 1.01·26-s − 1.94·27-s + 1.74·29-s − 0.556·30-s − 0.125·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(28.9109\)
Root analytic conductor: \(5.37688\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 490,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 + 5T \)
7 \( 1 \)
good3 \( 1 + 9.15T + 27T^{2} \)
11 \( 1 + 35.7T + 1.33e3T^{2} \)
13 \( 1 + 67.4T + 2.19e3T^{2} \)
17 \( 1 - 19.1T + 4.91e3T^{2} \)
19 \( 1 - 86.6T + 6.85e3T^{2} \)
23 \( 1 - 195.T + 1.21e4T^{2} \)
29 \( 1 - 272.T + 2.43e4T^{2} \)
31 \( 1 + 21.6T + 2.97e4T^{2} \)
37 \( 1 - 132.T + 5.06e4T^{2} \)
41 \( 1 - 67.7T + 6.89e4T^{2} \)
43 \( 1 + 107.T + 7.95e4T^{2} \)
47 \( 1 + 609.T + 1.03e5T^{2} \)
53 \( 1 + 645.T + 1.48e5T^{2} \)
59 \( 1 + 140.T + 2.05e5T^{2} \)
61 \( 1 - 834.T + 2.26e5T^{2} \)
67 \( 1 - 491.T + 3.00e5T^{2} \)
71 \( 1 + 479.T + 3.57e5T^{2} \)
73 \( 1 - 610.T + 3.89e5T^{2} \)
79 \( 1 + 153.T + 4.93e5T^{2} \)
83 \( 1 + 1.01e3T + 5.71e5T^{2} \)
89 \( 1 - 784.T + 7.04e5T^{2} \)
97 \( 1 - 227.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17431109945127628361340674812, −9.601534082076359268713126648636, −8.080925617067687651454174903338, −7.24717070653784102981482621915, −6.55678307611549608590222020445, −5.23270049071871663222005926102, −4.83413536585229832238433962156, −2.89492602483617122237615839473, −1.03549675197909689625523192878, 0, 1.03549675197909689625523192878, 2.89492602483617122237615839473, 4.83413536585229832238433962156, 5.23270049071871663222005926102, 6.55678307611549608590222020445, 7.24717070653784102981482621915, 8.080925617067687651454174903338, 9.601534082076359268713126648636, 10.17431109945127628361340674812

Graph of the $Z$-function along the critical line