| L(s) = 1 | + 1.41i·5-s − 2·13-s + 1.41i·17-s − 1.00·25-s + 1.41i·29-s − 1.41i·41-s − 49-s + 1.41i·53-s − 2.82i·65-s − 2.00·85-s + 1.41i·89-s − 1.41i·101-s + 2·109-s + 1.41i·113-s + ⋯ |
| L(s) = 1 | + 1.41i·5-s − 2·13-s + 1.41i·17-s − 1.00·25-s + 1.41i·29-s − 1.41i·41-s − 49-s + 1.41i·53-s − 2.82i·65-s − 2.00·85-s + 1.41i·89-s − 1.41i·101-s + 2·109-s + 1.41i·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8319996556\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8319996556\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 2T + T^{2} \) |
| 17 | \( 1 - 1.41iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - 1.41iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + 1.41iT - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.41iT - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.600382519314067409425240834359, −8.694713240169931339343211450585, −7.67525022228218376117662889250, −7.17342791169523369123507386953, −6.51025095753160281438593897872, −5.61354566421476800335894918704, −4.67366925330211298521715875519, −3.61422743557924062040303804826, −2.79107145983021744794964407166, −1.92915414754702691980789632561,
0.53493052033900144993726839620, 2.00437913210693491302489167006, 2.99430039106863727725013774060, 4.45382301204594312228857793787, 4.83630017757732207590779184401, 5.52686335555049534084164717510, 6.66806023330649798218069321958, 7.55071859520826889512189049595, 8.106172408262329228236930236965, 9.030542698482044622429187036784