| L(s) = 1 | + 3.41·5-s − 4.82i·7-s − 2.82i·11-s + 2.82i·13-s − 5.41i·17-s − 5.65·19-s + 1.17·23-s + 6.65·25-s − 0.585·29-s − 3.17i·31-s − 16.4i·35-s − 3.65i·37-s + 2.58i·41-s + 9.65·43-s − 12.4·47-s + ⋯ |
| L(s) = 1 | + 1.52·5-s − 1.82i·7-s − 0.852i·11-s + 0.784i·13-s − 1.31i·17-s − 1.29·19-s + 0.244·23-s + 1.33·25-s − 0.108·29-s − 0.569i·31-s − 2.78i·35-s − 0.601i·37-s + 0.403i·41-s + 1.47·43-s − 1.82·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.089545528\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.089545528\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 - 3.41T + 5T^{2} \) |
| 7 | \( 1 + 4.82iT - 7T^{2} \) |
| 11 | \( 1 + 2.82iT - 11T^{2} \) |
| 13 | \( 1 - 2.82iT - 13T^{2} \) |
| 17 | \( 1 + 5.41iT - 17T^{2} \) |
| 19 | \( 1 + 5.65T + 19T^{2} \) |
| 23 | \( 1 - 1.17T + 23T^{2} \) |
| 29 | \( 1 + 0.585T + 29T^{2} \) |
| 31 | \( 1 + 3.17iT - 31T^{2} \) |
| 37 | \( 1 + 3.65iT - 37T^{2} \) |
| 41 | \( 1 - 2.58iT - 41T^{2} \) |
| 43 | \( 1 - 9.65T + 43T^{2} \) |
| 47 | \( 1 + 12.4T + 47T^{2} \) |
| 53 | \( 1 + 5.07T + 53T^{2} \) |
| 59 | \( 1 - 2.34iT - 59T^{2} \) |
| 61 | \( 1 - 7.65iT - 61T^{2} \) |
| 67 | \( 1 - 12T + 67T^{2} \) |
| 71 | \( 1 + 4.48T + 71T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 - 6.48iT - 79T^{2} \) |
| 83 | \( 1 - 5.17iT - 83T^{2} \) |
| 89 | \( 1 - 12.2iT - 89T^{2} \) |
| 97 | \( 1 - 13.6T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.989381313536108481470657863133, −7.985181640840948455460246837401, −7.04456878691551356019486277994, −6.54326021304858408639042391064, −5.75342954271676378654892243713, −4.74069361002316984864468349053, −4.01228376974065599760273592070, −2.85406355455886356601623612481, −1.77452068044452813381761043006, −0.67116515437534502075938333588,
1.79497165810668352076306835982, 2.19088929907138344121106205761, 3.21068923856874190041442762923, 4.71622992510796016796297414721, 5.38890400458878353731772284274, 6.16905849183434429478258517947, 6.44230384417422423822698072962, 7.86491495852013596117845120668, 8.675903643959334782610057154929, 9.129045666977687303711072572400