Properties

Label 2-48e2-24.11-c1-0-29
Degree $2$
Conductor $2304$
Sign $-0.169 + 0.985i$
Analytic cond. $18.3975$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.41·5-s − 4.82i·7-s − 2.82i·11-s + 2.82i·13-s − 5.41i·17-s − 5.65·19-s + 1.17·23-s + 6.65·25-s − 0.585·29-s − 3.17i·31-s − 16.4i·35-s − 3.65i·37-s + 2.58i·41-s + 9.65·43-s − 12.4·47-s + ⋯
L(s)  = 1  + 1.52·5-s − 1.82i·7-s − 0.852i·11-s + 0.784i·13-s − 1.31i·17-s − 1.29·19-s + 0.244·23-s + 1.33·25-s − 0.108·29-s − 0.569i·31-s − 2.78i·35-s − 0.601i·37-s + 0.403i·41-s + 1.47·43-s − 1.82·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $-0.169 + 0.985i$
Analytic conductor: \(18.3975\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2304} (1151, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :1/2),\ -0.169 + 0.985i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.089545528\)
\(L(\frac12)\) \(\approx\) \(2.089545528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 3.41T + 5T^{2} \)
7 \( 1 + 4.82iT - 7T^{2} \)
11 \( 1 + 2.82iT - 11T^{2} \)
13 \( 1 - 2.82iT - 13T^{2} \)
17 \( 1 + 5.41iT - 17T^{2} \)
19 \( 1 + 5.65T + 19T^{2} \)
23 \( 1 - 1.17T + 23T^{2} \)
29 \( 1 + 0.585T + 29T^{2} \)
31 \( 1 + 3.17iT - 31T^{2} \)
37 \( 1 + 3.65iT - 37T^{2} \)
41 \( 1 - 2.58iT - 41T^{2} \)
43 \( 1 - 9.65T + 43T^{2} \)
47 \( 1 + 12.4T + 47T^{2} \)
53 \( 1 + 5.07T + 53T^{2} \)
59 \( 1 - 2.34iT - 59T^{2} \)
61 \( 1 - 7.65iT - 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 + 4.48T + 71T^{2} \)
73 \( 1 + 4T + 73T^{2} \)
79 \( 1 - 6.48iT - 79T^{2} \)
83 \( 1 - 5.17iT - 83T^{2} \)
89 \( 1 - 12.2iT - 89T^{2} \)
97 \( 1 - 13.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.989381313536108481470657863133, −7.985181640840948455460246837401, −7.04456878691551356019486277994, −6.54326021304858408639042391064, −5.75342954271676378654892243713, −4.74069361002316984864468349053, −4.01228376974065599760273592070, −2.85406355455886356601623612481, −1.77452068044452813381761043006, −0.67116515437534502075938333588, 1.79497165810668352076306835982, 2.19088929907138344121106205761, 3.21068923856874190041442762923, 4.71622992510796016796297414721, 5.38890400458878353731772284274, 6.16905849183434429478258517947, 6.44230384417422423822698072962, 7.86491495852013596117845120668, 8.675903643959334782610057154929, 9.129045666977687303711072572400

Graph of the $Z$-function along the critical line