Properties

Label 2-48e2-16.5-c1-0-18
Degree $2$
Conductor $2304$
Sign $0.991 + 0.130i$
Analytic cond. $18.3975$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.378i·7-s + (−2.46 + 2.46i)13-s + (2.44 − 2.44i)19-s − 5i·25-s + 10.1·31-s + (1.53 + 1.53i)37-s + (7.34 + 7.34i)43-s + 6.85·49-s + (−10.4 + 10.4i)61-s + (11.3 − 11.3i)67-s − 13.8i·73-s + 9.41·79-s + (0.933 + 0.933i)91-s + 13.8·97-s − 11.6i·103-s + ⋯
L(s)  = 1  − 0.143i·7-s + (−0.683 + 0.683i)13-s + (0.561 − 0.561i)19-s i·25-s + 1.82·31-s + (0.252 + 0.252i)37-s + (1.12 + 1.12i)43-s + 0.979·49-s + (−1.33 + 1.33i)61-s + (1.38 − 1.38i)67-s − 1.62i·73-s + 1.05·79-s + (0.0978 + 0.0978i)91-s + 1.40·97-s − 1.15i·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $0.991 + 0.130i$
Analytic conductor: \(18.3975\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2304} (1729, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :1/2),\ 0.991 + 0.130i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.717444341\)
\(L(\frac12)\) \(\approx\) \(1.717444341\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 5iT^{2} \)
7 \( 1 + 0.378iT - 7T^{2} \)
11 \( 1 + 11iT^{2} \)
13 \( 1 + (2.46 - 2.46i)T - 13iT^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + (-2.44 + 2.44i)T - 19iT^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 29iT^{2} \)
31 \( 1 - 10.1T + 31T^{2} \)
37 \( 1 + (-1.53 - 1.53i)T + 37iT^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + (-7.34 - 7.34i)T + 43iT^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53iT^{2} \)
59 \( 1 + 59iT^{2} \)
61 \( 1 + (10.4 - 10.4i)T - 61iT^{2} \)
67 \( 1 + (-11.3 + 11.3i)T - 67iT^{2} \)
71 \( 1 - 71T^{2} \)
73 \( 1 + 13.8iT - 73T^{2} \)
79 \( 1 - 9.41T + 79T^{2} \)
83 \( 1 - 83iT^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.090855212142362162230034124551, −8.154950600661561576634563097850, −7.48370384158381463454851395409, −6.64740270645959447084984187783, −5.97990086963147940755450700691, −4.80115478199551317983488529996, −4.35415113640582440824015157272, −3.08438486079658086701868200140, −2.23835924680964445355596804284, −0.822868703384004403576106687549, 0.888487536748921548333230445150, 2.27753846910265299087436406223, 3.18219709544077357349458994975, 4.16774953522162858674634921846, 5.17732332355057784346119355365, 5.76303463857712019428652870747, 6.75826306896396263975660761427, 7.56088909929761128401543085962, 8.159177143633520519408033536482, 9.068542752380200078103548478109

Graph of the $Z$-function along the critical line