| L(s) = 1 | + (−0.965 + 0.258i)3-s + (0.366 − 1.36i)5-s + (0.707 − 1.22i)7-s + (0.866 − 0.499i)9-s + (0.258 + 0.965i)11-s + 1.41i·15-s + 17-s + (0.707 + 0.707i)19-s + (−0.366 + 1.36i)21-s + (−0.866 − 0.5i)25-s + (−0.707 + 0.707i)27-s + (−0.366 − 1.36i)29-s + (−0.499 − 0.866i)33-s + (−1.41 − 1.41i)35-s + (1 + i)37-s + ⋯ |
| L(s) = 1 | + (−0.965 + 0.258i)3-s + (0.366 − 1.36i)5-s + (0.707 − 1.22i)7-s + (0.866 − 0.499i)9-s + (0.258 + 0.965i)11-s + 1.41i·15-s + 17-s + (0.707 + 0.707i)19-s + (−0.366 + 1.36i)21-s + (−0.866 − 0.5i)25-s + (−0.707 + 0.707i)27-s + (−0.366 − 1.36i)29-s + (−0.499 − 0.866i)33-s + (−1.41 − 1.41i)35-s + (1 + i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.461 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.461 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.074735171\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.074735171\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.965 - 0.258i)T \) |
| good | 5 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 13 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.385100919787821184858163332855, −8.068178263105037225858222916930, −7.64827047773057431034360659973, −6.67205989590685040607853749811, −5.72396471897375264896517408616, −4.98312239219850749144619041861, −4.47988409487558606603408510483, −3.71353467665407294982606802555, −1.65941138239380331139997074751, −1.00100997047126805795129588852,
1.44331580217306979377544966348, 2.59874711342526708926190306811, 3.40441020196032314444338729719, 4.84097372557487795524032730607, 5.68386230482923980228189498185, 5.99116674030672082255701913246, 6.96224696112110133190444670768, 7.55972786055636567541013490616, 8.542234623865950568260111588149, 9.395391578567103351239360518869