| L(s) = 1 | + (−0.258 + 0.965i)3-s + (−1.36 + 0.366i)5-s + (−0.707 − 1.22i)7-s + (−0.866 − 0.499i)9-s + (0.965 + 0.258i)11-s − 1.41i·15-s + 17-s + (−0.707 − 0.707i)19-s + (1.36 − 0.366i)21-s + (0.866 − 0.5i)25-s + (0.707 − 0.707i)27-s + (1.36 + 0.366i)29-s + (−0.499 + 0.866i)33-s + (1.41 + 1.41i)35-s + (1 + i)37-s + ⋯ |
| L(s) = 1 | + (−0.258 + 0.965i)3-s + (−1.36 + 0.366i)5-s + (−0.707 − 1.22i)7-s + (−0.866 − 0.499i)9-s + (0.965 + 0.258i)11-s − 1.41i·15-s + 17-s + (−0.707 − 0.707i)19-s + (1.36 − 0.366i)21-s + (0.866 − 0.5i)25-s + (0.707 − 0.707i)27-s + (1.36 + 0.366i)29-s + (−0.499 + 0.866i)33-s + (1.41 + 1.41i)35-s + (1 + i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7452382195\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7452382195\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.258 - 0.965i)T \) |
| good | 5 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 7 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.449933033673479968902633770117, −8.397294490901391806517062782274, −7.74845302754990388130260876809, −6.73032009256482930961255542970, −6.42977298366315523872616919877, −4.93160969300496423322100455808, −4.24910033381898307176713150406, −3.65382872618804789557119663571, −3.02071331745527685441035478199, −0.75785033015319087975137516509,
0.926117974111196613002791490615, 2.36220971021013964355027549881, 3.35994071943858847545849247869, 4.23050006108980978923691045956, 5.42811122626209285905136204167, 6.13043262650555250072162178316, 6.76871611148801870456700734025, 7.76682857560365894758876963246, 8.281057017138893058147379366426, 8.889358930574126999564825272619