Properties

Label 2-48e2-144.139-c0-0-1
Degree $2$
Conductor $2304$
Sign $0.953 - 0.300i$
Analytic cond. $1.14984$
Root an. cond. $1.07230$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.258 + 0.965i)3-s + (−1.36 + 0.366i)5-s + (−0.707 − 1.22i)7-s + (−0.866 − 0.499i)9-s + (0.965 + 0.258i)11-s − 1.41i·15-s + 17-s + (−0.707 − 0.707i)19-s + (1.36 − 0.366i)21-s + (0.866 − 0.5i)25-s + (0.707 − 0.707i)27-s + (1.36 + 0.366i)29-s + (−0.499 + 0.866i)33-s + (1.41 + 1.41i)35-s + (1 + i)37-s + ⋯
L(s)  = 1  + (−0.258 + 0.965i)3-s + (−1.36 + 0.366i)5-s + (−0.707 − 1.22i)7-s + (−0.866 − 0.499i)9-s + (0.965 + 0.258i)11-s − 1.41i·15-s + 17-s + (−0.707 − 0.707i)19-s + (1.36 − 0.366i)21-s + (0.866 − 0.5i)25-s + (0.707 − 0.707i)27-s + (1.36 + 0.366i)29-s + (−0.499 + 0.866i)33-s + (1.41 + 1.41i)35-s + (1 + i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $0.953 - 0.300i$
Analytic conductor: \(1.14984\)
Root analytic conductor: \(1.07230\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2304} (319, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :0),\ 0.953 - 0.300i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7452382195\)
\(L(\frac12)\) \(\approx\) \(0.7452382195\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.258 - 0.965i)T \)
good5 \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \)
7 \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \)
13 \( 1 + (-0.866 + 0.5i)T^{2} \)
17 \( 1 - T + T^{2} \)
19 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 + (-1 - i)T + iT^{2} \)
41 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
43 \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \)
47 \( 1 + (0.5 - 0.866i)T^{2} \)
53 \( 1 + iT^{2} \)
59 \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \)
61 \( 1 + (0.866 + 0.5i)T^{2} \)
67 \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \)
71 \( 1 - 1.41T + T^{2} \)
73 \( 1 + iT - T^{2} \)
79 \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \)
83 \( 1 + (-0.866 - 0.5i)T^{2} \)
89 \( 1 - 2iT - T^{2} \)
97 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.449933033673479968902633770117, −8.397294490901391806517062782274, −7.74845302754990388130260876809, −6.73032009256482930961255542970, −6.42977298366315523872616919877, −4.93160969300496423322100455808, −4.24910033381898307176713150406, −3.65382872618804789557119663571, −3.02071331745527685441035478199, −0.75785033015319087975137516509, 0.926117974111196613002791490615, 2.36220971021013964355027549881, 3.35994071943858847545849247869, 4.23050006108980978923691045956, 5.42811122626209285905136204167, 6.13043262650555250072162178316, 6.76871611148801870456700734025, 7.76682857560365894758876963246, 8.281057017138893058147379366426, 8.889358930574126999564825272619

Graph of the $Z$-function along the critical line