Properties

Label 2-48e2-1.1-c3-0-92
Degree $2$
Conductor $2304$
Sign $-1$
Analytic cond. $135.940$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82·5-s + 14.1·7-s − 20·11-s + 39.5·13-s + 34·17-s + 52·19-s − 62.2·23-s − 117·25-s − 200.·29-s − 110.·31-s − 40.0·35-s − 271.·37-s + 26·41-s + 252·43-s − 345.·47-s − 142.·49-s + 681.·53-s + 56.5·55-s − 364·59-s + 735.·61-s − 112.·65-s + 628·67-s + 333.·71-s + 338·73-s − 282.·77-s − 789.·79-s − 1.03e3·83-s + ⋯
L(s)  = 1  − 0.252·5-s + 0.763·7-s − 0.548·11-s + 0.844·13-s + 0.485·17-s + 0.627·19-s − 0.564·23-s − 0.936·25-s − 1.28·29-s − 0.639·31-s − 0.193·35-s − 1.20·37-s + 0.0990·41-s + 0.893·43-s − 1.07·47-s − 0.416·49-s + 1.76·53-s + 0.138·55-s − 0.803·59-s + 1.54·61-s − 0.213·65-s + 1.14·67-s + 0.557·71-s + 0.541·73-s − 0.418·77-s − 1.12·79-s − 1.37·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(135.940\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2304,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 2.82T + 125T^{2} \)
7 \( 1 - 14.1T + 343T^{2} \)
11 \( 1 + 20T + 1.33e3T^{2} \)
13 \( 1 - 39.5T + 2.19e3T^{2} \)
17 \( 1 - 34T + 4.91e3T^{2} \)
19 \( 1 - 52T + 6.85e3T^{2} \)
23 \( 1 + 62.2T + 1.21e4T^{2} \)
29 \( 1 + 200.T + 2.43e4T^{2} \)
31 \( 1 + 110.T + 2.97e4T^{2} \)
37 \( 1 + 271.T + 5.06e4T^{2} \)
41 \( 1 - 26T + 6.89e4T^{2} \)
43 \( 1 - 252T + 7.95e4T^{2} \)
47 \( 1 + 345.T + 1.03e5T^{2} \)
53 \( 1 - 681.T + 1.48e5T^{2} \)
59 \( 1 + 364T + 2.05e5T^{2} \)
61 \( 1 - 735.T + 2.26e5T^{2} \)
67 \( 1 - 628T + 3.00e5T^{2} \)
71 \( 1 - 333.T + 3.57e5T^{2} \)
73 \( 1 - 338T + 3.89e5T^{2} \)
79 \( 1 + 789.T + 4.93e5T^{2} \)
83 \( 1 + 1.03e3T + 5.71e5T^{2} \)
89 \( 1 + 234T + 7.04e5T^{2} \)
97 \( 1 + 178T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.125709043154121783727582121406, −7.68474971848931030322070945816, −6.82686261435344295353264715231, −5.65579182131629756627970926650, −5.30470407747296080935945734506, −4.08756416781764431283351279878, −3.47710281783325012430758249252, −2.20279298025413948886632278745, −1.29573481456013158198339857232, 0, 1.29573481456013158198339857232, 2.20279298025413948886632278745, 3.47710281783325012430758249252, 4.08756416781764431283351279878, 5.30470407747296080935945734506, 5.65579182131629756627970926650, 6.82686261435344295353264715231, 7.68474971848931030322070945816, 8.125709043154121783727582121406

Graph of the $Z$-function along the critical line