Properties

Label 2-48e2-1.1-c3-0-38
Degree $2$
Conductor $2304$
Sign $1$
Analytic cond. $135.940$
Root an. cond. $11.6593$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·5-s + 21.1·7-s − 42.3·11-s − 20·13-s + 8·17-s + 84.6·19-s − 169.·23-s − 89·25-s − 46·29-s + 21.1·31-s + 126.·35-s + 164·37-s + 312·41-s + 423.·43-s − 169.·47-s + 105.·49-s + 266·53-s − 253.·55-s + 253.·59-s + 132·61-s − 120·65-s + 507.·67-s + 677.·71-s + 246·73-s − 896.·77-s − 232.·79-s − 973.·83-s + ⋯
L(s)  = 1  + 0.536·5-s + 1.14·7-s − 1.16·11-s − 0.426·13-s + 0.114·17-s + 1.02·19-s − 1.53·23-s − 0.711·25-s − 0.294·29-s + 0.122·31-s + 0.613·35-s + 0.728·37-s + 1.18·41-s + 1.50·43-s − 0.525·47-s + 0.306·49-s + 0.689·53-s − 0.622·55-s + 0.560·59-s + 0.277·61-s − 0.228·65-s + 0.926·67-s + 1.13·71-s + 0.394·73-s − 1.32·77-s − 0.331·79-s − 1.28·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(135.940\)
Root analytic conductor: \(11.6593\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.557973851\)
\(L(\frac12)\) \(\approx\) \(2.557973851\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 6T + 125T^{2} \)
7 \( 1 - 21.1T + 343T^{2} \)
11 \( 1 + 42.3T + 1.33e3T^{2} \)
13 \( 1 + 20T + 2.19e3T^{2} \)
17 \( 1 - 8T + 4.91e3T^{2} \)
19 \( 1 - 84.6T + 6.85e3T^{2} \)
23 \( 1 + 169.T + 1.21e4T^{2} \)
29 \( 1 + 46T + 2.43e4T^{2} \)
31 \( 1 - 21.1T + 2.97e4T^{2} \)
37 \( 1 - 164T + 5.06e4T^{2} \)
41 \( 1 - 312T + 6.89e4T^{2} \)
43 \( 1 - 423.T + 7.95e4T^{2} \)
47 \( 1 + 169.T + 1.03e5T^{2} \)
53 \( 1 - 266T + 1.48e5T^{2} \)
59 \( 1 - 253.T + 2.05e5T^{2} \)
61 \( 1 - 132T + 2.26e5T^{2} \)
67 \( 1 - 507.T + 3.00e5T^{2} \)
71 \( 1 - 677.T + 3.57e5T^{2} \)
73 \( 1 - 246T + 3.89e5T^{2} \)
79 \( 1 + 232.T + 4.93e5T^{2} \)
83 \( 1 + 973.T + 5.71e5T^{2} \)
89 \( 1 - 1.39e3T + 7.04e5T^{2} \)
97 \( 1 + 302T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.510203494958569075473569957636, −7.76071441139252348984212924569, −7.46117180224875122397741590603, −6.08390815882679726651876947523, −5.50236092771098475603889010913, −4.80189099312086770366939471157, −3.86413657686958596916412871263, −2.55299902155961116719969862621, −1.94524802376396156095771121162, −0.70976619479302057083419087927, 0.70976619479302057083419087927, 1.94524802376396156095771121162, 2.55299902155961116719969862621, 3.86413657686958596916412871263, 4.80189099312086770366939471157, 5.50236092771098475603889010913, 6.08390815882679726651876947523, 7.46117180224875122397741590603, 7.76071441139252348984212924569, 8.510203494958569075473569957636

Graph of the $Z$-function along the critical line