Properties

Label 2-48e2-1.1-c1-0-17
Degree $2$
Conductor $2304$
Sign $1$
Analytic cond. $18.3975$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 4·11-s + 4·13-s + 2·17-s + 4·19-s − 8·23-s − 5·25-s + 8·29-s + 4·31-s − 4·37-s − 6·41-s − 4·43-s − 8·47-s + 9·49-s + 8·53-s − 12·59-s + 12·61-s − 12·67-s + 8·71-s − 6·73-s + 16·77-s + 4·79-s − 4·83-s + 6·89-s + 16·91-s − 2·97-s + 8·101-s + ⋯
L(s)  = 1  + 1.51·7-s + 1.20·11-s + 1.10·13-s + 0.485·17-s + 0.917·19-s − 1.66·23-s − 25-s + 1.48·29-s + 0.718·31-s − 0.657·37-s − 0.937·41-s − 0.609·43-s − 1.16·47-s + 9/7·49-s + 1.09·53-s − 1.56·59-s + 1.53·61-s − 1.46·67-s + 0.949·71-s − 0.702·73-s + 1.82·77-s + 0.450·79-s − 0.439·83-s + 0.635·89-s + 1.67·91-s − 0.203·97-s + 0.796·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(18.3975\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.520523471\)
\(L(\frac12)\) \(\approx\) \(2.520523471\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.770780213851605268751258605897, −8.273401806148982335189253098083, −7.66603558879594006866408095630, −6.59361365188310900976865652323, −5.90734355349400077940850184592, −4.98531549119289558181541630311, −4.16197372918625835514829553019, −3.38591647618518318996390357483, −1.87178167433974199275141976633, −1.18014352853545560604310847207, 1.18014352853545560604310847207, 1.87178167433974199275141976633, 3.38591647618518318996390357483, 4.16197372918625835514829553019, 4.98531549119289558181541630311, 5.90734355349400077940850184592, 6.59361365188310900976865652323, 7.66603558879594006866408095630, 8.273401806148982335189253098083, 8.770780213851605268751258605897

Graph of the $Z$-function along the critical line