Properties

Label 2-4842-1.1-c1-0-83
Degree $2$
Conductor $4842$
Sign $-1$
Analytic cond. $38.6635$
Root an. cond. $6.21800$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 0.725·5-s + 1.29·7-s − 8-s + 0.725·10-s + 3.71·11-s + 2.30·13-s − 1.29·14-s + 16-s − 6.32·17-s + 0.0212·19-s − 0.725·20-s − 3.71·22-s + 1.30·23-s − 4.47·25-s − 2.30·26-s + 1.29·28-s + 2.06·29-s − 5.82·31-s − 32-s + 6.32·34-s − 0.942·35-s − 7.25·37-s − 0.0212·38-s + 0.725·40-s − 8.77·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.324·5-s + 0.491·7-s − 0.353·8-s + 0.229·10-s + 1.12·11-s + 0.640·13-s − 0.347·14-s + 0.250·16-s − 1.53·17-s + 0.00487·19-s − 0.162·20-s − 0.792·22-s + 0.272·23-s − 0.894·25-s − 0.452·26-s + 0.245·28-s + 0.383·29-s − 1.04·31-s − 0.176·32-s + 1.08·34-s − 0.159·35-s − 1.19·37-s − 0.00344·38-s + 0.114·40-s − 1.37·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4842 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4842 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4842\)    =    \(2 \cdot 3^{2} \cdot 269\)
Sign: $-1$
Analytic conductor: \(38.6635\)
Root analytic conductor: \(6.21800\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4842,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
269 \( 1 - T \)
good5 \( 1 + 0.725T + 5T^{2} \)
7 \( 1 - 1.29T + 7T^{2} \)
11 \( 1 - 3.71T + 11T^{2} \)
13 \( 1 - 2.30T + 13T^{2} \)
17 \( 1 + 6.32T + 17T^{2} \)
19 \( 1 - 0.0212T + 19T^{2} \)
23 \( 1 - 1.30T + 23T^{2} \)
29 \( 1 - 2.06T + 29T^{2} \)
31 \( 1 + 5.82T + 31T^{2} \)
37 \( 1 + 7.25T + 37T^{2} \)
41 \( 1 + 8.77T + 41T^{2} \)
43 \( 1 - 4.52T + 43T^{2} \)
47 \( 1 + 3.85T + 47T^{2} \)
53 \( 1 - 6.86T + 53T^{2} \)
59 \( 1 + 7.84T + 59T^{2} \)
61 \( 1 - 3.84T + 61T^{2} \)
67 \( 1 + 9.31T + 67T^{2} \)
71 \( 1 - 0.643T + 71T^{2} \)
73 \( 1 + 2.97T + 73T^{2} \)
79 \( 1 - 0.418T + 79T^{2} \)
83 \( 1 - 15.6T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 - 5.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.062127020476945639664024893784, −7.17954661043057910354999758143, −6.65764583378435721577569252726, −5.93920438482215233490347210947, −4.91532294570424518987677084412, −4.06808824151098825977657742569, −3.36635314222214616666820912028, −2.08396770372399139405525142067, −1.39065254770339010218440526589, 0, 1.39065254770339010218440526589, 2.08396770372399139405525142067, 3.36635314222214616666820912028, 4.06808824151098825977657742569, 4.91532294570424518987677084412, 5.93920438482215233490347210947, 6.65764583378435721577569252726, 7.17954661043057910354999758143, 8.062127020476945639664024893784

Graph of the $Z$-function along the critical line