Properties

Label 2-4840-1.1-c1-0-74
Degree $2$
Conductor $4840$
Sign $1$
Analytic cond. $38.6475$
Root an. cond. $6.21671$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·3-s + 5-s + 2.41·7-s + 2.82·9-s + 2·13-s + 2.41·15-s + 5.65·17-s + 4.82·19-s + 5.82·21-s + 3.65·23-s + 25-s − 0.414·27-s + 2·29-s − 5.65·31-s + 2.41·35-s − 4·37-s + 4.82·39-s − 9.48·41-s + 3.58·43-s + 2.82·45-s + 7.58·47-s − 1.17·49-s + 13.6·51-s − 7.65·53-s + 11.6·57-s − 11.3·59-s + 61-s + ⋯
L(s)  = 1  + 1.39·3-s + 0.447·5-s + 0.912·7-s + 0.942·9-s + 0.554·13-s + 0.623·15-s + 1.37·17-s + 1.10·19-s + 1.27·21-s + 0.762·23-s + 0.200·25-s − 0.0797·27-s + 0.371·29-s − 1.01·31-s + 0.408·35-s − 0.657·37-s + 0.773·39-s − 1.48·41-s + 0.546·43-s + 0.421·45-s + 1.10·47-s − 0.167·49-s + 1.91·51-s − 1.05·53-s + 1.54·57-s − 1.47·59-s + 0.128·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4840\)    =    \(2^{3} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(38.6475\)
Root analytic conductor: \(6.21671\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.492226874\)
\(L(\frac12)\) \(\approx\) \(4.492226874\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 - 2.41T + 3T^{2} \)
7 \( 1 - 2.41T + 7T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 5.65T + 17T^{2} \)
19 \( 1 - 4.82T + 19T^{2} \)
23 \( 1 - 3.65T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 5.65T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 + 9.48T + 41T^{2} \)
43 \( 1 - 3.58T + 43T^{2} \)
47 \( 1 - 7.58T + 47T^{2} \)
53 \( 1 + 7.65T + 53T^{2} \)
59 \( 1 + 11.3T + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 + 6.41T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 - 4T + 73T^{2} \)
79 \( 1 + 14.4T + 79T^{2} \)
83 \( 1 + 13.3T + 83T^{2} \)
89 \( 1 - 2.65T + 89T^{2} \)
97 \( 1 + 17.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.435811402340221309379424496327, −7.52114954116470468656403541634, −7.28986360735495519674895865422, −5.98665391389311326222289301681, −5.32491244287707527498360669907, −4.51520677951399603424993221825, −3.37468221026756531397223249579, −3.08069695698150023545455650486, −1.86968949386780042497488880760, −1.25833790757320983656161262289, 1.25833790757320983656161262289, 1.86968949386780042497488880760, 3.08069695698150023545455650486, 3.37468221026756531397223249579, 4.51520677951399603424993221825, 5.32491244287707527498360669907, 5.98665391389311326222289301681, 7.28986360735495519674895865422, 7.52114954116470468656403541634, 8.435811402340221309379424496327

Graph of the $Z$-function along the critical line