L(s) = 1 | − 1.64·3-s + 5-s + 3.37·7-s − 0.306·9-s + 4.71·13-s − 1.64·15-s + 7.55·17-s − 2.22·19-s − 5.54·21-s − 0.0373·23-s + 25-s + 5.42·27-s + 6.36·29-s − 0.348·31-s + 3.37·35-s − 6.63·37-s − 7.73·39-s − 1.97·41-s + 12.1·43-s − 0.306·45-s − 6.36·47-s + 4.40·49-s − 12.4·51-s + 9.06·53-s + 3.65·57-s − 3.10·59-s − 11.6·61-s + ⋯ |
L(s) = 1 | − 0.947·3-s + 0.447·5-s + 1.27·7-s − 0.102·9-s + 1.30·13-s − 0.423·15-s + 1.83·17-s − 0.511·19-s − 1.20·21-s − 0.00778·23-s + 0.200·25-s + 1.04·27-s + 1.18·29-s − 0.0626·31-s + 0.570·35-s − 1.09·37-s − 1.23·39-s − 0.307·41-s + 1.85·43-s − 0.0457·45-s − 0.929·47-s + 0.628·49-s − 1.73·51-s + 1.24·53-s + 0.484·57-s − 0.404·59-s − 1.49·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.029979970\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.029979970\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + 1.64T + 3T^{2} \) |
| 7 | \( 1 - 3.37T + 7T^{2} \) |
| 13 | \( 1 - 4.71T + 13T^{2} \) |
| 17 | \( 1 - 7.55T + 17T^{2} \) |
| 19 | \( 1 + 2.22T + 19T^{2} \) |
| 23 | \( 1 + 0.0373T + 23T^{2} \) |
| 29 | \( 1 - 6.36T + 29T^{2} \) |
| 31 | \( 1 + 0.348T + 31T^{2} \) |
| 37 | \( 1 + 6.63T + 37T^{2} \) |
| 41 | \( 1 + 1.97T + 41T^{2} \) |
| 43 | \( 1 - 12.1T + 43T^{2} \) |
| 47 | \( 1 + 6.36T + 47T^{2} \) |
| 53 | \( 1 - 9.06T + 53T^{2} \) |
| 59 | \( 1 + 3.10T + 59T^{2} \) |
| 61 | \( 1 + 11.6T + 61T^{2} \) |
| 67 | \( 1 - 7.94T + 67T^{2} \) |
| 71 | \( 1 - 0.238T + 71T^{2} \) |
| 73 | \( 1 - 13.3T + 73T^{2} \) |
| 79 | \( 1 + 7.08T + 79T^{2} \) |
| 83 | \( 1 + 12.0T + 83T^{2} \) |
| 89 | \( 1 - 1.87T + 89T^{2} \) |
| 97 | \( 1 + 15.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.339123759702141070986406927944, −7.60684768895947868060048093276, −6.63394259911359115437574838019, −5.94253381533909628495544677925, −5.43371758795748183640079217263, −4.81900127227780956170704271613, −3.86988288233117869963728204617, −2.85434863940879654859994983987, −1.59890858769077248069814917787, −0.913687954964177077015891816505,
0.913687954964177077015891816505, 1.59890858769077248069814917787, 2.85434863940879654859994983987, 3.86988288233117869963728204617, 4.81900127227780956170704271613, 5.43371758795748183640079217263, 5.94253381533909628495544677925, 6.63394259911359115437574838019, 7.60684768895947868060048093276, 8.339123759702141070986406927944