Properties

Label 2-4840-1.1-c1-0-39
Degree $2$
Conductor $4840$
Sign $1$
Analytic cond. $38.6475$
Root an. cond. $6.21671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s − 3·9-s + 2·13-s − 2·17-s − 4·19-s + 4·23-s + 25-s + 2·29-s − 8·31-s + 4·35-s + 6·37-s + 6·41-s + 8·43-s − 3·45-s + 4·47-s + 9·49-s + 6·53-s − 4·59-s + 2·61-s − 12·63-s + 2·65-s + 8·67-s + 6·73-s + 9·81-s + 16·83-s − 2·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s − 9-s + 0.554·13-s − 0.485·17-s − 0.917·19-s + 0.834·23-s + 1/5·25-s + 0.371·29-s − 1.43·31-s + 0.676·35-s + 0.986·37-s + 0.937·41-s + 1.21·43-s − 0.447·45-s + 0.583·47-s + 9/7·49-s + 0.824·53-s − 0.520·59-s + 0.256·61-s − 1.51·63-s + 0.248·65-s + 0.977·67-s + 0.702·73-s + 81-s + 1.75·83-s − 0.216·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4840\)    =    \(2^{3} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(38.6475\)
Root analytic conductor: \(6.21671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{4840} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.434892033\)
\(L(\frac12)\) \(\approx\) \(2.434892033\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.319898091581096916744910484661, −7.70303958223137845782045497044, −6.81644823665973489085396145114, −5.94028444997569064994570219738, −5.41810682445711458041939493554, −4.62487051901560546933133606596, −3.87138095586879394292498913230, −2.64264527642459335277526208075, −1.99873426678938511502281122159, −0.880315059374556524645724595724, 0.880315059374556524645724595724, 1.99873426678938511502281122159, 2.64264527642459335277526208075, 3.87138095586879394292498913230, 4.62487051901560546933133606596, 5.41810682445711458041939493554, 5.94028444997569064994570219738, 6.81644823665973489085396145114, 7.70303958223137845782045497044, 8.319898091581096916744910484661

Graph of the $Z$-function along the critical line