Properties

Label 2-4840-1.1-c1-0-101
Degree $2$
Conductor $4840$
Sign $-1$
Analytic cond. $38.6475$
Root an. cond. $6.21671$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.19·3-s + 5-s − 2.58·7-s + 1.83·9-s − 1.66·13-s + 2.19·15-s − 6.39·17-s − 0.330·19-s − 5.68·21-s + 1.33·23-s + 25-s − 2.56·27-s − 0.941·29-s + 5.78·31-s − 2.58·35-s − 7.41·37-s − 3.66·39-s − 5.49·41-s + 4.54·43-s + 1.83·45-s − 7.21·47-s − 0.318·49-s − 14.0·51-s + 6.55·53-s − 0.727·57-s − 7.74·59-s − 3.88·61-s + ⋯
L(s)  = 1  + 1.26·3-s + 0.447·5-s − 0.976·7-s + 0.610·9-s − 0.462·13-s + 0.567·15-s − 1.55·17-s − 0.0759·19-s − 1.23·21-s + 0.278·23-s + 0.200·25-s − 0.493·27-s − 0.174·29-s + 1.03·31-s − 0.436·35-s − 1.21·37-s − 0.587·39-s − 0.857·41-s + 0.692·43-s + 0.273·45-s − 1.05·47-s − 0.0455·49-s − 1.96·51-s + 0.900·53-s − 0.0963·57-s − 1.00·59-s − 0.497·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4840\)    =    \(2^{3} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(38.6475\)
Root analytic conductor: \(6.21671\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good3 \( 1 - 2.19T + 3T^{2} \)
7 \( 1 + 2.58T + 7T^{2} \)
13 \( 1 + 1.66T + 13T^{2} \)
17 \( 1 + 6.39T + 17T^{2} \)
19 \( 1 + 0.330T + 19T^{2} \)
23 \( 1 - 1.33T + 23T^{2} \)
29 \( 1 + 0.941T + 29T^{2} \)
31 \( 1 - 5.78T + 31T^{2} \)
37 \( 1 + 7.41T + 37T^{2} \)
41 \( 1 + 5.49T + 41T^{2} \)
43 \( 1 - 4.54T + 43T^{2} \)
47 \( 1 + 7.21T + 47T^{2} \)
53 \( 1 - 6.55T + 53T^{2} \)
59 \( 1 + 7.74T + 59T^{2} \)
61 \( 1 + 3.88T + 61T^{2} \)
67 \( 1 - 9.68T + 67T^{2} \)
71 \( 1 + 11.4T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 + 7.61T + 79T^{2} \)
83 \( 1 + 9.29T + 83T^{2} \)
89 \( 1 + 17.7T + 89T^{2} \)
97 \( 1 - 4.03T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.137459360301292608109818387858, −7.07652155520833203903640209063, −6.69928946226280146139999674136, −5.82565048013229187803300989186, −4.82940116053496188437579965137, −3.99280257085995928080592881090, −3.10575758315605535131095567112, −2.57125622261674315951456214531, −1.71710013420403844786507845850, 0, 1.71710013420403844786507845850, 2.57125622261674315951456214531, 3.10575758315605535131095567112, 3.99280257085995928080592881090, 4.82940116053496188437579965137, 5.82565048013229187803300989186, 6.69928946226280146139999674136, 7.07652155520833203903640209063, 8.137459360301292608109818387858

Graph of the $Z$-function along the critical line