Properties

Label 2-4830-1.1-c1-0-13
Degree $2$
Conductor $4830$
Sign $1$
Analytic cond. $38.5677$
Root an. cond. $6.21029$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 7-s − 8-s + 9-s + 10-s + 12-s − 4·13-s − 14-s − 15-s + 16-s − 18-s + 2·19-s − 20-s + 21-s + 23-s − 24-s + 25-s + 4·26-s + 27-s + 28-s + 6·29-s + 30-s + 2·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s − 1.10·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.235·18-s + 0.458·19-s − 0.223·20-s + 0.218·21-s + 0.208·23-s − 0.204·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s + 0.188·28-s + 1.11·29-s + 0.182·30-s + 0.359·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4830 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4830 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4830\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(38.5677\)
Root analytic conductor: \(6.21029\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{4830} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4830,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.510780206\)
\(L(\frac12)\) \(\approx\) \(1.510780206\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 - T \)
23 \( 1 - T \)
good11 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.289978710462499911103408641219, −7.62967070335659537431995715532, −7.14395266017522711060430990120, −6.37028369552767253034796372345, −5.22507322117727091285237140059, −4.60107108263936642886562055588, −3.55624941343280070308943386477, −2.75265441640306274816311731263, −1.91174831431498191295734688911, −0.72894115116713518555393979924, 0.72894115116713518555393979924, 1.91174831431498191295734688911, 2.75265441640306274816311731263, 3.55624941343280070308943386477, 4.60107108263936642886562055588, 5.22507322117727091285237140059, 6.37028369552767253034796372345, 7.14395266017522711060430990120, 7.62967070335659537431995715532, 8.289978710462499911103408641219

Graph of the $Z$-function along the critical line