L(s) = 1 | + (−0.599 − 1.03i)2-s + (0.5 − 0.866i)3-s + (0.280 − 0.486i)4-s + (0.286 + 0.495i)5-s − 1.19·6-s + (−1.87 − 1.86i)7-s − 3.07·8-s + (−0.499 − 0.866i)9-s + (0.343 − 0.594i)10-s + (−1.26 + 2.18i)11-s + (−0.280 − 0.486i)12-s − 5.05·13-s + (−0.816 + 3.06i)14-s + 0.572·15-s + (1.28 + 2.21i)16-s + (1.12 − 1.95i)17-s + ⋯ |
L(s) = 1 | + (−0.423 − 0.734i)2-s + (0.288 − 0.499i)3-s + (0.140 − 0.243i)4-s + (0.128 + 0.221i)5-s − 0.489·6-s + (−0.708 − 0.705i)7-s − 1.08·8-s + (−0.166 − 0.288i)9-s + (0.108 − 0.188i)10-s + (−0.380 + 0.659i)11-s + (−0.0811 − 0.140i)12-s − 1.40·13-s + (−0.218 + 0.819i)14-s + 0.147·15-s + (0.320 + 0.554i)16-s + (0.273 − 0.473i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.317i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.948 - 0.317i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.118931 + 0.728877i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.118931 + 0.728877i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (1.87 + 1.86i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.599 + 1.03i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.286 - 0.495i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.26 - 2.18i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.05T + 13T^{2} \) |
| 17 | \( 1 + (-1.12 + 1.95i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.19 + 2.07i)T + (-9.5 + 16.4i)T^{2} \) |
| 29 | \( 1 - 0.796T + 29T^{2} \) |
| 31 | \( 1 + (-1.72 + 2.99i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.40 + 7.62i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 10.9T + 41T^{2} \) |
| 43 | \( 1 + 1.90T + 43T^{2} \) |
| 47 | \( 1 + (-0.968 - 1.67i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.78 - 8.28i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.20 + 3.81i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.06 + 1.84i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.00 - 3.47i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.424T + 71T^{2} \) |
| 73 | \( 1 + (-7.00 + 12.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.48 + 4.30i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 10.1T + 83T^{2} \) |
| 89 | \( 1 + (1.91 + 3.31i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 15.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35250094741641554664249903931, −9.778648082586644213899275889353, −9.047644960856706350757593977064, −7.61585511470184337659004361188, −6.97219297169189806067721975413, −5.98531254154997330689033058044, −4.56658491351260111899284082240, −2.97132590633865336690004817982, −2.20919835795570190689007096155, −0.45556921967375248499126572233,
2.56749659325077015462191412457, 3.47456011025660373442308288681, 5.09753362154464917928470137402, 5.96903172860118704196498519034, 6.98107593599309559210406043521, 8.010515975655490295400710491167, 8.706446131608985069061601185721, 9.507692549081719568288702579947, 10.24603970261569465697964407348, 11.51475617378641980197797218705