L(s) = 1 | + (−0.5 + 0.866i)3-s + (1 − 1.73i)4-s + (0.5 − 2.59i)7-s + (−0.499 − 0.866i)9-s + (1 − 1.73i)11-s + (0.999 + 1.73i)12-s − 3·13-s + (−1.99 − 3.46i)16-s + (−1 + 1.73i)17-s + (−1.5 − 2.59i)19-s + (2 + 1.73i)21-s + (−0.5 − 0.866i)23-s + (2.5 − 4.33i)25-s + 0.999·27-s + (−4 − 3.46i)28-s + 6·29-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (0.5 − 0.866i)4-s + (0.188 − 0.981i)7-s + (−0.166 − 0.288i)9-s + (0.301 − 0.522i)11-s + (0.288 + 0.499i)12-s − 0.832·13-s + (−0.499 − 0.866i)16-s + (−0.242 + 0.420i)17-s + (−0.344 − 0.596i)19-s + (0.436 + 0.377i)21-s + (−0.104 − 0.180i)23-s + (0.5 − 0.866i)25-s + 0.192·27-s + (−0.755 − 0.654i)28-s + 1.11·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.04351 - 0.793861i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.04351 - 0.793861i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3T + 13T^{2} \) |
| 17 | \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 + 2.59i)T + (-9.5 + 16.4i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (-1.5 + 2.59i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.5 - 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 3T + 43T^{2} \) |
| 47 | \( 1 + (-5 - 8.66i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.5 - 6.06i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (-7 - 12.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68483642553712540580669288659, −10.16436477849446367153882541146, −9.256790894451603555770324442040, −8.068739417884246567022959148542, −6.86600108735784035500470346867, −6.23477990751254073746139050507, −4.99980390802012691916442982875, −4.20401699536831176714123535759, −2.59920772360186432263395704160, −0.830448254714121241522396090724,
1.96328165780901198634610387737, 2.94760024981985077568430727468, 4.47962722379806541495878870072, 5.63648180212877538251114042523, 6.74025870014379059487372318660, 7.42692095864344879048971388049, 8.389462246331985922386263755143, 9.198462570764373662748236291977, 10.42045810761469081055717817051, 11.47336983773104904235557683552