Properties

Label 2-483-7.4-c1-0-14
Degree $2$
Conductor $483$
Sign $0.853 - 0.520i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.384 + 0.666i)2-s + (0.5 − 0.866i)3-s + (0.704 − 1.21i)4-s + (2.01 + 3.48i)5-s + 0.769·6-s + (2.63 − 0.229i)7-s + 2.62·8-s + (−0.499 − 0.866i)9-s + (−1.54 + 2.68i)10-s + (−2.73 + 4.73i)11-s + (−0.704 − 1.21i)12-s − 4.39·13-s + (1.16 + 1.66i)14-s + 4.02·15-s + (−0.400 − 0.693i)16-s + (1.12 − 1.94i)17-s + ⋯
L(s)  = 1  + (0.271 + 0.470i)2-s + (0.288 − 0.499i)3-s + (0.352 − 0.609i)4-s + (0.900 + 1.55i)5-s + 0.313·6-s + (0.996 − 0.0869i)7-s + 0.926·8-s + (−0.166 − 0.288i)9-s + (−0.489 + 0.848i)10-s + (−0.824 + 1.42i)11-s + (−0.203 − 0.352i)12-s − 1.22·13-s + (0.311 + 0.445i)14-s + 1.03·15-s + (−0.100 − 0.173i)16-s + (0.272 − 0.472i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.853 - 0.520i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.853 - 0.520i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.853 - 0.520i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (277, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.853 - 0.520i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.23457 + 0.627146i\)
\(L(\frac12)\) \(\approx\) \(2.23457 + 0.627146i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.5 + 0.866i)T \)
7 \( 1 + (-2.63 + 0.229i)T \)
23 \( 1 + (0.5 + 0.866i)T \)
good2 \( 1 + (-0.384 - 0.666i)T + (-1 + 1.73i)T^{2} \)
5 \( 1 + (-2.01 - 3.48i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (2.73 - 4.73i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + 4.39T + 13T^{2} \)
17 \( 1 + (-1.12 + 1.94i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.78 + 3.08i)T + (-9.5 + 16.4i)T^{2} \)
29 \( 1 + 4.70T + 29T^{2} \)
31 \( 1 + (-5.27 + 9.13i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-1.96 - 3.39i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 3.97T + 41T^{2} \)
43 \( 1 - 2.61T + 43T^{2} \)
47 \( 1 + (-0.259 - 0.448i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-6.31 + 10.9i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (0.421 - 0.729i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4.50 + 7.80i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-0.699 + 1.21i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 7.10T + 71T^{2} \)
73 \( 1 + (2.66 - 4.61i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-6.72 - 11.6i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 3.39T + 83T^{2} \)
89 \( 1 + (6.50 + 11.2i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 6.35T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98375881139965958837906642997, −10.06694496879369892931255611068, −9.688826027328971162399741948440, −7.79339289309590029943594601676, −7.27628012025489260911880445384, −6.64002463870028373042327833011, −5.52751921751530350547925068332, −4.64843212036842376529270020249, −2.46635395335930269644316932787, −2.09150977352406282340023226080, 1.57930549792747379789326483748, 2.73774796274350885087814861637, 4.18741426107551312443360355655, 5.06800388894604336749079681111, 5.77876587610216059393166598248, 7.66505023399113575891588631205, 8.354656330801731421476182339175, 8.957394700229058229912559001018, 10.19832490282836883637677437257, 10.81937229482374700573796533856

Graph of the $Z$-function along the critical line