L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (0.500 + 0.866i)4-s + (1.5 − 2.59i)5-s − 0.999·6-s + (−0.5 − 2.59i)7-s + 3·8-s + (−0.499 + 0.866i)9-s + (−1.5 − 2.59i)10-s + (1 + 1.73i)11-s + (0.499 − 0.866i)12-s − 13-s + (−2.5 − 0.866i)14-s − 3·15-s + (0.500 − 0.866i)16-s + (−0.5 − 0.866i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (0.250 + 0.433i)4-s + (0.670 − 1.16i)5-s − 0.408·6-s + (−0.188 − 0.981i)7-s + 1.06·8-s + (−0.166 + 0.288i)9-s + (−0.474 − 0.821i)10-s + (0.301 + 0.522i)11-s + (0.144 − 0.249i)12-s − 0.277·13-s + (−0.668 − 0.231i)14-s − 0.774·15-s + (0.125 − 0.216i)16-s + (−0.121 − 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13234 - 1.48844i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13234 - 1.48844i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 + 2.59i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + T + 13T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 - 16.4i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (5 + 8.66i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 + 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (3.5 - 6.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.5 - 7.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 15T + 71T^{2} \) |
| 73 | \( 1 + (-6.5 - 11.2i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2 - 3.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 16T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92035146742730266923296917944, −9.928104513981145298815537667749, −9.083930644149681039722741371596, −7.79180852060727552906574294586, −7.19180650265218594247773685345, −5.96780917188122952596228672618, −4.76345321644918578195391499919, −3.95428314064053294690307582548, −2.32543613246226100827491627562, −1.15904042009298692192322873976,
2.09434948118240671861024327379, 3.33962610718409731458706555556, 4.92445290457440851689817339709, 5.81846973557231875627856916160, 6.37439891964091385971059755362, 7.18928450642202972307256093786, 8.624407323596410742243285903787, 9.639121804605024141459786475728, 10.42096863145797375827484525849, 11.03633116559666662156276817469