Properties

Label 2-483-161.61-c1-0-19
Degree $2$
Conductor $483$
Sign $-0.910 + 0.414i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.34 − 1.05i)2-s + (0.814 + 0.580i)3-s + (0.221 + 0.912i)4-s + (−1.18 + 0.228i)5-s + (−0.482 − 1.64i)6-s + (0.252 + 2.63i)7-s + (−0.755 + 1.65i)8-s + (0.327 + 0.945i)9-s + (1.84 + 0.950i)10-s + (−2.19 − 2.79i)11-s + (−0.348 + 0.871i)12-s + (−3.01 − 4.68i)13-s + (2.45 − 3.81i)14-s + (−1.10 − 0.502i)15-s + (4.44 − 2.28i)16-s + (−4.10 − 3.91i)17-s + ⋯
L(s)  = 1  + (−0.952 − 0.749i)2-s + (0.470 + 0.334i)3-s + (0.110 + 0.456i)4-s + (−0.531 + 0.102i)5-s + (−0.197 − 0.671i)6-s + (0.0952 + 0.995i)7-s + (−0.267 + 0.585i)8-s + (0.109 + 0.315i)9-s + (0.582 + 0.300i)10-s + (−0.663 − 0.843i)11-s + (−0.100 + 0.251i)12-s + (−0.834 − 1.29i)13-s + (0.655 − 1.01i)14-s + (−0.284 − 0.129i)15-s + (1.11 − 0.572i)16-s + (−0.996 − 0.950i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.910 + 0.414i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.910 + 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-0.910 + 0.414i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (61, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ -0.910 + 0.414i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0902990 - 0.415996i\)
\(L(\frac12)\) \(\approx\) \(0.0902990 - 0.415996i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.814 - 0.580i)T \)
7 \( 1 + (-0.252 - 2.63i)T \)
23 \( 1 + (1.33 + 4.60i)T \)
good2 \( 1 + (1.34 + 1.05i)T + (0.471 + 1.94i)T^{2} \)
5 \( 1 + (1.18 - 0.228i)T + (4.64 - 1.85i)T^{2} \)
11 \( 1 + (2.19 + 2.79i)T + (-2.59 + 10.6i)T^{2} \)
13 \( 1 + (3.01 + 4.68i)T + (-5.40 + 11.8i)T^{2} \)
17 \( 1 + (4.10 + 3.91i)T + (0.808 + 16.9i)T^{2} \)
19 \( 1 + (-5.09 + 4.85i)T + (0.904 - 18.9i)T^{2} \)
29 \( 1 + (-1.64 + 0.481i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (0.0541 + 0.567i)T + (-30.4 + 5.86i)T^{2} \)
37 \( 1 + (-0.0333 + 0.0115i)T + (29.0 - 22.8i)T^{2} \)
41 \( 1 + (-3.96 + 3.43i)T + (5.83 - 40.5i)T^{2} \)
43 \( 1 + (-1.02 + 0.467i)T + (28.1 - 32.4i)T^{2} \)
47 \( 1 + (2.39 + 1.38i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (9.31 + 0.443i)T + (52.7 + 5.03i)T^{2} \)
59 \( 1 + (3.53 - 6.86i)T + (-34.2 - 48.0i)T^{2} \)
61 \( 1 + (-8.72 - 12.2i)T + (-19.9 + 57.6i)T^{2} \)
67 \( 1 + (2.47 + 6.17i)T + (-48.4 + 46.2i)T^{2} \)
71 \( 1 + (-0.277 + 1.92i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (2.50 - 0.608i)T + (64.8 - 33.4i)T^{2} \)
79 \( 1 + (11.3 - 0.541i)T + (78.6 - 7.50i)T^{2} \)
83 \( 1 + (2.67 - 3.08i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (-5.86 - 0.560i)T + (87.3 + 16.8i)T^{2} \)
97 \( 1 + (4.96 + 5.73i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54622656834475991800366246970, −9.647452836188624816084682644337, −8.937316738513061565434291645948, −8.211791711164387625758747561780, −7.42725689438304496739112457209, −5.69071088580653647050088167241, −4.86494889252347636646971497695, −2.96674413629285230273448112276, −2.54899064705260784139330195134, −0.32405459199681447300883070370, 1.71060403637186807131260545271, 3.62586431480925889915207342074, 4.55778989133421318391791328507, 6.29354599344700071961413139542, 7.27341308908244850540008750014, 7.65149451380838489322331879198, 8.397726190588586277481455427979, 9.627598003533050091875129901243, 9.934691602287355999850373585123, 11.28272062748232054539276819210

Graph of the $Z$-function along the critical line