Properties

Label 2-483-161.160-c1-0-23
Degree $2$
Conductor $483$
Sign $0.974 + 0.222i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.86·2-s i·3-s + 1.46·4-s + 4.10·5-s − 1.86i·6-s + (0.663 + 2.56i)7-s − 8-s − 9-s + 7.63·10-s + 1.89i·11-s − 1.46i·12-s − 2.18i·13-s + (1.23 + 4.76i)14-s − 4.10i·15-s − 4.78·16-s − 1.18·17-s + ⋯
L(s)  = 1  + 1.31·2-s − 0.577i·3-s + 0.731·4-s + 1.83·5-s − 0.759i·6-s + (0.250 + 0.968i)7-s − 0.353·8-s − 0.333·9-s + 2.41·10-s + 0.572i·11-s − 0.422i·12-s − 0.605i·13-s + (0.329 + 1.27i)14-s − 1.05i·15-s − 1.19·16-s − 0.287·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 + 0.222i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 + 0.222i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.974 + 0.222i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (160, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.974 + 0.222i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.23700 - 0.364448i\)
\(L(\frac12)\) \(\approx\) \(3.23700 - 0.364448i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + iT \)
7 \( 1 + (-0.663 - 2.56i)T \)
23 \( 1 + (4.25 + 2.20i)T \)
good2 \( 1 - 1.86T + 2T^{2} \)
5 \( 1 - 4.10T + 5T^{2} \)
11 \( 1 - 1.89iT - 11T^{2} \)
13 \( 1 + 2.18iT - 13T^{2} \)
17 \( 1 + 1.18T + 17T^{2} \)
19 \( 1 + 4.98T + 19T^{2} \)
29 \( 1 - 2.39T + 29T^{2} \)
31 \( 1 + 9.32iT - 31T^{2} \)
37 \( 1 + 6.92iT - 37T^{2} \)
41 \( 1 - 5.60iT - 41T^{2} \)
43 \( 1 - 5.38iT - 43T^{2} \)
47 \( 1 + 9.57iT - 47T^{2} \)
53 \( 1 - 5.85iT - 53T^{2} \)
59 \( 1 - 3.50iT - 59T^{2} \)
61 \( 1 - 1.49T + 61T^{2} \)
67 \( 1 - 3.48iT - 67T^{2} \)
71 \( 1 - 1.81T + 71T^{2} \)
73 \( 1 - 7.97iT - 73T^{2} \)
79 \( 1 - 14.0iT - 79T^{2} \)
83 \( 1 - 2.51T + 83T^{2} \)
89 \( 1 + 4.57T + 89T^{2} \)
97 \( 1 - 7.44T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20902706848890629835296441953, −10.05700491710957180195557424778, −9.216186999861685414984280093226, −8.298704454535582249499546184295, −6.70632483814990223201872582573, −5.97045655189728810642828726224, −5.51715871953315008735226006825, −4.41489817409829726654798048391, −2.59320247479866846798542933645, −2.09500060673471962157198010144, 1.93490868601404943841463345237, 3.27722170801616874437916166542, 4.42785553001265736486222604778, 5.18043642646086444763224304400, 6.16387953942720101013813821129, 6.72708297643269860162839058426, 8.544366709265978350519451436255, 9.371893379835241179300137781598, 10.31956295615472589456454446915, 10.89396210334417705045263419121

Graph of the $Z$-function along the critical line