L(s) = 1 | + (0.904 − 2.61i)2-s + (−0.458 − 0.888i)3-s + (−4.44 − 3.49i)4-s + (−2.90 + 0.277i)5-s + (−2.73 + 0.393i)6-s + (1.81 + 1.92i)7-s + (−8.50 + 5.46i)8-s + (−0.580 + 0.814i)9-s + (−1.90 + 7.84i)10-s + (1.83 − 0.634i)11-s + (−1.06 + 5.55i)12-s + (−1.56 − 5.33i)13-s + (6.68 − 2.98i)14-s + (1.57 + 2.45i)15-s + (3.92 + 16.1i)16-s + (−1.82 − 0.728i)17-s + ⋯ |
L(s) = 1 | + (0.639 − 1.84i)2-s + (−0.264 − 0.513i)3-s + (−2.22 − 1.74i)4-s + (−1.29 + 0.124i)5-s + (−1.11 + 0.160i)6-s + (0.684 + 0.728i)7-s + (−3.00 + 1.93i)8-s + (−0.193 + 0.271i)9-s + (−0.601 + 2.48i)10-s + (0.553 − 0.191i)11-s + (−0.308 + 1.60i)12-s + (−0.434 − 1.48i)13-s + (1.78 − 0.799i)14-s + (0.407 + 0.633i)15-s + (0.981 + 4.04i)16-s + (−0.441 − 0.176i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.439 - 0.898i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.439 - 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.427274 + 0.266670i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.427274 + 0.266670i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.458 + 0.888i)T \) |
| 7 | \( 1 + (-1.81 - 1.92i)T \) |
| 23 | \( 1 + (3.24 - 3.53i)T \) |
good | 2 | \( 1 + (-0.904 + 2.61i)T + (-1.57 - 1.23i)T^{2} \) |
| 5 | \( 1 + (2.90 - 0.277i)T + (4.90 - 0.946i)T^{2} \) |
| 11 | \( 1 + (-1.83 + 0.634i)T + (8.64 - 6.79i)T^{2} \) |
| 13 | \( 1 + (1.56 + 5.33i)T + (-10.9 + 7.02i)T^{2} \) |
| 17 | \( 1 + (1.82 + 0.728i)T + (12.3 + 11.7i)T^{2} \) |
| 19 | \( 1 + (3.59 - 1.44i)T + (13.7 - 13.1i)T^{2} \) |
| 29 | \( 1 + (0.964 + 6.71i)T + (-27.8 + 8.17i)T^{2} \) |
| 31 | \( 1 + (0.198 - 0.00946i)T + (30.8 - 2.94i)T^{2} \) |
| 37 | \( 1 + (-5.84 - 4.16i)T + (12.1 + 34.9i)T^{2} \) |
| 41 | \( 1 + (9.74 + 4.45i)T + (26.8 + 30.9i)T^{2} \) |
| 43 | \( 1 + (-3.04 + 4.73i)T + (-17.8 - 39.1i)T^{2} \) |
| 47 | \( 1 + (5.51 - 3.18i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (7.68 + 8.05i)T + (-2.52 + 52.9i)T^{2} \) |
| 59 | \( 1 + (4.25 + 1.03i)T + (52.4 + 27.0i)T^{2} \) |
| 61 | \( 1 + (-3.90 - 2.01i)T + (35.3 + 49.6i)T^{2} \) |
| 67 | \( 1 + (0.685 + 3.55i)T + (-62.2 + 24.9i)T^{2} \) |
| 71 | \( 1 + (-3.36 - 3.87i)T + (-10.1 + 70.2i)T^{2} \) |
| 73 | \( 1 + (-0.207 + 0.264i)T + (-17.2 - 70.9i)T^{2} \) |
| 79 | \( 1 + (-3.93 + 4.13i)T + (-3.75 - 78.9i)T^{2} \) |
| 83 | \( 1 + (1.40 + 3.07i)T + (-54.3 + 62.7i)T^{2} \) |
| 89 | \( 1 + (-0.569 + 11.9i)T + (-88.5 - 8.45i)T^{2} \) |
| 97 | \( 1 + (-1.54 + 3.38i)T + (-63.5 - 73.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69930143457578201135242795019, −9.720161925859432158394530784172, −8.490936810303223478397293204880, −7.903328590576099534247230066863, −6.07655422083741318948849786436, −5.10072709864998189962230685009, −4.12637952524705747401214846827, −3.10653254174595718248200949274, −1.90399501616228594180784113899, −0.25902233069216993311277302474,
3.77664744142669408765837099572, 4.38811748369805556581530598581, 4.83497018988554870194735842334, 6.42501758973425707931669738658, 6.99178602062076292723429017469, 7.917914649708233521041158510826, 8.625553211192471639749610186142, 9.493942606008278369152456921111, 11.03590657634282920005273342164, 11.89255007332434783243713455476