Properties

Label 2-483-161.10-c1-0-13
Degree $2$
Conductor $483$
Sign $0.918 + 0.396i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.541 − 1.56i)2-s + (0.458 + 0.888i)3-s + (−0.578 − 0.455i)4-s + (−1.66 + 0.158i)5-s + (1.63 − 0.235i)6-s + (1.09 + 2.41i)7-s + (1.75 − 1.13i)8-s + (−0.580 + 0.814i)9-s + (−0.652 + 2.68i)10-s + (1.58 − 0.548i)11-s + (0.139 − 0.722i)12-s + (0.290 + 0.989i)13-s + (4.35 − 0.400i)14-s + (−0.903 − 1.40i)15-s + (−1.16 − 4.79i)16-s + (7.44 + 2.97i)17-s + ⋯
L(s)  = 1  + (0.382 − 1.10i)2-s + (0.264 + 0.513i)3-s + (−0.289 − 0.227i)4-s + (−0.744 + 0.0710i)5-s + (0.668 − 0.0961i)6-s + (0.412 + 0.911i)7-s + (0.621 − 0.399i)8-s + (−0.193 + 0.271i)9-s + (−0.206 + 0.849i)10-s + (0.477 − 0.165i)11-s + (0.0402 − 0.208i)12-s + (0.0806 + 0.274i)13-s + (1.16 − 0.107i)14-s + (−0.233 − 0.363i)15-s + (−0.290 − 1.19i)16-s + (1.80 + 0.722i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $0.918 + 0.396i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 0.918 + 0.396i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.92603 - 0.397871i\)
\(L(\frac12)\) \(\approx\) \(1.92603 - 0.397871i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.458 - 0.888i)T \)
7 \( 1 + (-1.09 - 2.41i)T \)
23 \( 1 + (-4.47 - 1.71i)T \)
good2 \( 1 + (-0.541 + 1.56i)T + (-1.57 - 1.23i)T^{2} \)
5 \( 1 + (1.66 - 0.158i)T + (4.90 - 0.946i)T^{2} \)
11 \( 1 + (-1.58 + 0.548i)T + (8.64 - 6.79i)T^{2} \)
13 \( 1 + (-0.290 - 0.989i)T + (-10.9 + 7.02i)T^{2} \)
17 \( 1 + (-7.44 - 2.97i)T + (12.3 + 11.7i)T^{2} \)
19 \( 1 + (1.17 - 0.471i)T + (13.7 - 13.1i)T^{2} \)
29 \( 1 + (1.03 + 7.22i)T + (-27.8 + 8.17i)T^{2} \)
31 \( 1 + (0.732 - 0.0348i)T + (30.8 - 2.94i)T^{2} \)
37 \( 1 + (-2.16 - 1.54i)T + (12.1 + 34.9i)T^{2} \)
41 \( 1 + (2.27 + 1.03i)T + (26.8 + 30.9i)T^{2} \)
43 \( 1 + (1.31 - 2.04i)T + (-17.8 - 39.1i)T^{2} \)
47 \( 1 + (2.89 - 1.66i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (7.76 + 8.14i)T + (-2.52 + 52.9i)T^{2} \)
59 \( 1 + (-4.72 - 1.14i)T + (52.4 + 27.0i)T^{2} \)
61 \( 1 + (8.22 + 4.24i)T + (35.3 + 49.6i)T^{2} \)
67 \( 1 + (0.325 + 1.68i)T + (-62.2 + 24.9i)T^{2} \)
71 \( 1 + (6.99 + 8.07i)T + (-10.1 + 70.2i)T^{2} \)
73 \( 1 + (8.07 - 10.2i)T + (-17.2 - 70.9i)T^{2} \)
79 \( 1 + (-2.74 + 2.88i)T + (-3.75 - 78.9i)T^{2} \)
83 \( 1 + (1.39 + 3.05i)T + (-54.3 + 62.7i)T^{2} \)
89 \( 1 + (-0.110 + 2.32i)T + (-88.5 - 8.45i)T^{2} \)
97 \( 1 + (-1.44 + 3.17i)T + (-63.5 - 73.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.25075128090113723759997663413, −10.16546066761033619691742845960, −9.412805013129462509198329657098, −8.274310607334096953394827178448, −7.56589667044183082759037227530, −6.02055862169720304615317984662, −4.82218841096768997627737509715, −3.79961685519839654486524594360, −3.06976812972039692013046381642, −1.66575780465738771678054981283, 1.28489923825988038408601454450, 3.33402611173720852625491625304, 4.49541192468588879136254617289, 5.46501149068016815853845191180, 6.66452365382897997749386046301, 7.45945158734436805229754840590, 7.80897443280915117097824570287, 8.862277081576962475520764128421, 10.20856840814213072433182473818, 11.12946051829297906008216382099

Graph of the $Z$-function along the critical line