Properties

Label 2-483-1.1-c3-0-56
Degree $2$
Conductor $483$
Sign $-1$
Analytic cond. $28.4979$
Root an. cond. $5.33834$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.603·2-s + 3·3-s − 7.63·4-s + 14.1·5-s + 1.81·6-s + 7·7-s − 9.43·8-s + 9·9-s + 8.55·10-s − 54.0·11-s − 22.9·12-s − 81.7·13-s + 4.22·14-s + 42.5·15-s + 55.3·16-s − 21.9·17-s + 5.43·18-s − 124.·19-s − 108.·20-s + 21·21-s − 32.6·22-s + 23·23-s − 28.3·24-s + 76.1·25-s − 49.3·26-s + 27·27-s − 53.4·28-s + ⋯
L(s)  = 1  + 0.213·2-s + 0.577·3-s − 0.954·4-s + 1.26·5-s + 0.123·6-s + 0.377·7-s − 0.416·8-s + 0.333·9-s + 0.270·10-s − 1.48·11-s − 0.551·12-s − 1.74·13-s + 0.0806·14-s + 0.732·15-s + 0.865·16-s − 0.313·17-s + 0.0711·18-s − 1.50·19-s − 1.21·20-s + 0.218·21-s − 0.316·22-s + 0.208·23-s − 0.240·24-s + 0.609·25-s − 0.372·26-s + 0.192·27-s − 0.360·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(28.4979\)
Root analytic conductor: \(5.33834\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 483,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 - 0.603T + 8T^{2} \)
5 \( 1 - 14.1T + 125T^{2} \)
11 \( 1 + 54.0T + 1.33e3T^{2} \)
13 \( 1 + 81.7T + 2.19e3T^{2} \)
17 \( 1 + 21.9T + 4.91e3T^{2} \)
19 \( 1 + 124.T + 6.85e3T^{2} \)
29 \( 1 - 69.8T + 2.43e4T^{2} \)
31 \( 1 - 147.T + 2.97e4T^{2} \)
37 \( 1 + 405.T + 5.06e4T^{2} \)
41 \( 1 - 378.T + 6.89e4T^{2} \)
43 \( 1 - 69.0T + 7.95e4T^{2} \)
47 \( 1 + 587.T + 1.03e5T^{2} \)
53 \( 1 + 380.T + 1.48e5T^{2} \)
59 \( 1 - 244.T + 2.05e5T^{2} \)
61 \( 1 + 649.T + 2.26e5T^{2} \)
67 \( 1 + 629.T + 3.00e5T^{2} \)
71 \( 1 - 483.T + 3.57e5T^{2} \)
73 \( 1 + 682.T + 3.89e5T^{2} \)
79 \( 1 + 691.T + 4.93e5T^{2} \)
83 \( 1 - 1.19e3T + 5.71e5T^{2} \)
89 \( 1 - 753.T + 7.04e5T^{2} \)
97 \( 1 - 866.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07798271158293590715198541324, −9.280112907713625439409248661431, −8.427391970526199535441037965547, −7.56867719332059679604714655064, −6.22726439634480730376827576196, −5.08330456345172683054042173728, −4.61332121931736578374510147761, −2.87335083598326043005280153929, −2.01094493051564107970424633082, 0, 2.01094493051564107970424633082, 2.87335083598326043005280153929, 4.61332121931736578374510147761, 5.08330456345172683054042173728, 6.22726439634480730376827576196, 7.56867719332059679604714655064, 8.427391970526199535441037965547, 9.280112907713625439409248661431, 10.07798271158293590715198541324

Graph of the $Z$-function along the critical line