Properties

Label 2-483-1.1-c3-0-55
Degree $2$
Conductor $483$
Sign $-1$
Analytic cond. $28.4979$
Root an. cond. $5.33834$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.29·2-s + 3·3-s − 2.72·4-s − 7.00·5-s + 6.89·6-s + 7·7-s − 24.6·8-s + 9·9-s − 16.0·10-s + 60.7·11-s − 8.16·12-s − 64.2·13-s + 16.0·14-s − 21.0·15-s − 34.8·16-s − 97.1·17-s + 20.6·18-s − 40.7·19-s + 19.0·20-s + 21·21-s + 139.·22-s + 23·23-s − 73.8·24-s − 75.9·25-s − 147.·26-s + 27·27-s − 19.0·28-s + ⋯
L(s)  = 1  + 0.812·2-s + 0.577·3-s − 0.340·4-s − 0.626·5-s + 0.469·6-s + 0.377·7-s − 1.08·8-s + 0.333·9-s − 0.508·10-s + 1.66·11-s − 0.196·12-s − 1.37·13-s + 0.307·14-s − 0.361·15-s − 0.544·16-s − 1.38·17-s + 0.270·18-s − 0.491·19-s + 0.213·20-s + 0.218·21-s + 1.35·22-s + 0.208·23-s − 0.628·24-s − 0.607·25-s − 1.11·26-s + 0.192·27-s − 0.128·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(28.4979\)
Root analytic conductor: \(5.33834\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 483,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 - 2.29T + 8T^{2} \)
5 \( 1 + 7.00T + 125T^{2} \)
11 \( 1 - 60.7T + 1.33e3T^{2} \)
13 \( 1 + 64.2T + 2.19e3T^{2} \)
17 \( 1 + 97.1T + 4.91e3T^{2} \)
19 \( 1 + 40.7T + 6.85e3T^{2} \)
29 \( 1 + 36.5T + 2.43e4T^{2} \)
31 \( 1 + 139.T + 2.97e4T^{2} \)
37 \( 1 + 46.2T + 5.06e4T^{2} \)
41 \( 1 + 414.T + 6.89e4T^{2} \)
43 \( 1 + 194.T + 7.95e4T^{2} \)
47 \( 1 + 366.T + 1.03e5T^{2} \)
53 \( 1 - 414.T + 1.48e5T^{2} \)
59 \( 1 + 323.T + 2.05e5T^{2} \)
61 \( 1 - 144.T + 2.26e5T^{2} \)
67 \( 1 - 155.T + 3.00e5T^{2} \)
71 \( 1 + 852.T + 3.57e5T^{2} \)
73 \( 1 - 790.T + 3.89e5T^{2} \)
79 \( 1 + 656.T + 4.93e5T^{2} \)
83 \( 1 - 369.T + 5.71e5T^{2} \)
89 \( 1 - 497.T + 7.04e5T^{2} \)
97 \( 1 + 1.72e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.958344191311023454899511784712, −9.071011907743192140106515454308, −8.500369154604279163779659160122, −7.26370885072199403677457849168, −6.41979613656519157160039275278, −4.96869617993165255624051194295, −4.24306699825717302880827767615, −3.45804375782567057067317531519, −1.99511389455262806652768391868, 0, 1.99511389455262806652768391868, 3.45804375782567057067317531519, 4.24306699825717302880827767615, 4.96869617993165255624051194295, 6.41979613656519157160039275278, 7.26370885072199403677457849168, 8.500369154604279163779659160122, 9.071011907743192140106515454308, 9.958344191311023454899511784712

Graph of the $Z$-function along the critical line