Properties

Label 2-483-1.1-c3-0-36
Degree $2$
Conductor $483$
Sign $-1$
Analytic cond. $28.4979$
Root an. cond. $5.33834$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·2-s + 3·3-s − 2.35·4-s − 18.5·5-s − 7.12·6-s + 7·7-s + 24.6·8-s + 9·9-s + 44.1·10-s + 29.5·11-s − 7.05·12-s − 64.1·13-s − 16.6·14-s − 55.7·15-s − 39.6·16-s + 57.2·17-s − 21.3·18-s + 93.4·19-s + 43.7·20-s + 21·21-s − 70.3·22-s + 23·23-s + 73.8·24-s + 220.·25-s + 152.·26-s + 27·27-s − 16.4·28-s + ⋯
L(s)  = 1  − 0.840·2-s + 0.577·3-s − 0.293·4-s − 1.66·5-s − 0.485·6-s + 0.377·7-s + 1.08·8-s + 0.333·9-s + 1.39·10-s + 0.811·11-s − 0.169·12-s − 1.36·13-s − 0.317·14-s − 0.959·15-s − 0.619·16-s + 0.817·17-s − 0.280·18-s + 1.12·19-s + 0.488·20-s + 0.218·21-s − 0.681·22-s + 0.208·23-s + 0.627·24-s + 1.76·25-s + 1.14·26-s + 0.192·27-s − 0.111·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(28.4979\)
Root analytic conductor: \(5.33834\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 483,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 + 2.37T + 8T^{2} \)
5 \( 1 + 18.5T + 125T^{2} \)
11 \( 1 - 29.5T + 1.33e3T^{2} \)
13 \( 1 + 64.1T + 2.19e3T^{2} \)
17 \( 1 - 57.2T + 4.91e3T^{2} \)
19 \( 1 - 93.4T + 6.85e3T^{2} \)
29 \( 1 + 286.T + 2.43e4T^{2} \)
31 \( 1 - 229.T + 2.97e4T^{2} \)
37 \( 1 - 98.5T + 5.06e4T^{2} \)
41 \( 1 + 76.2T + 6.89e4T^{2} \)
43 \( 1 - 68.2T + 7.95e4T^{2} \)
47 \( 1 + 561.T + 1.03e5T^{2} \)
53 \( 1 + 481.T + 1.48e5T^{2} \)
59 \( 1 + 550.T + 2.05e5T^{2} \)
61 \( 1 - 105.T + 2.26e5T^{2} \)
67 \( 1 + 870.T + 3.00e5T^{2} \)
71 \( 1 - 526.T + 3.57e5T^{2} \)
73 \( 1 - 79.3T + 3.89e5T^{2} \)
79 \( 1 - 321.T + 4.93e5T^{2} \)
83 \( 1 + 284.T + 5.71e5T^{2} \)
89 \( 1 - 1.45T + 7.04e5T^{2} \)
97 \( 1 + 97.0T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.758423380492150901995286913219, −9.280892300021405295321077062832, −8.089379337365609263246206477617, −7.78154051063068777752420988036, −7.03915325318762522792946858649, −5.02670556465925094477465878869, −4.19698455101644153584126207306, −3.18912361234917546322511371070, −1.31948511194252512158396774561, 0, 1.31948511194252512158396774561, 3.18912361234917546322511371070, 4.19698455101644153584126207306, 5.02670556465925094477465878869, 7.03915325318762522792946858649, 7.78154051063068777752420988036, 8.089379337365609263246206477617, 9.280892300021405295321077062832, 9.758423380492150901995286913219

Graph of the $Z$-function along the critical line