Properties

Label 2-483-1.1-c1-0-2
Degree $2$
Conductor $483$
Sign $1$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.69·2-s − 3-s + 0.868·4-s + 3.51·5-s + 1.69·6-s − 7-s + 1.91·8-s + 9-s − 5.94·10-s − 1.74·11-s − 0.868·12-s + 6.33·13-s + 1.69·14-s − 3.51·15-s − 4.98·16-s − 5.94·17-s − 1.69·18-s + 1.74·19-s + 3.04·20-s + 21-s + 2.95·22-s + 23-s − 1.91·24-s + 7.33·25-s − 10.7·26-s − 27-s − 0.868·28-s + ⋯
L(s)  = 1  − 1.19·2-s − 0.577·3-s + 0.434·4-s + 1.57·5-s + 0.691·6-s − 0.377·7-s + 0.677·8-s + 0.333·9-s − 1.88·10-s − 0.525·11-s − 0.250·12-s + 1.75·13-s + 0.452·14-s − 0.906·15-s − 1.24·16-s − 1.44·17-s − 0.399·18-s + 0.399·19-s + 0.681·20-s + 0.218·21-s + 0.629·22-s + 0.208·23-s − 0.391·24-s + 1.46·25-s − 2.10·26-s − 0.192·27-s − 0.164·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7919422528\)
\(L(\frac12)\) \(\approx\) \(0.7919422528\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 + 1.69T + 2T^{2} \)
5 \( 1 - 3.51T + 5T^{2} \)
11 \( 1 + 1.74T + 11T^{2} \)
13 \( 1 - 6.33T + 13T^{2} \)
17 \( 1 + 5.94T + 17T^{2} \)
19 \( 1 - 1.74T + 19T^{2} \)
29 \( 1 + 5.68T + 29T^{2} \)
31 \( 1 - 7.94T + 31T^{2} \)
37 \( 1 - 1.53T + 37T^{2} \)
41 \( 1 - 12.1T + 41T^{2} \)
43 \( 1 - 6.43T + 43T^{2} \)
47 \( 1 - 3.59T + 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 + 8.69T + 59T^{2} \)
61 \( 1 - 8.47T + 61T^{2} \)
67 \( 1 + 4.46T + 67T^{2} \)
71 \( 1 + 13.4T + 71T^{2} \)
73 \( 1 - 4.29T + 73T^{2} \)
79 \( 1 + 7.42T + 79T^{2} \)
83 \( 1 + 7.75T + 83T^{2} \)
89 \( 1 - 4.18T + 89T^{2} \)
97 \( 1 - 5.53T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71467008332142268420101746969, −10.06522826336291864322771359771, −9.183795088291003891715773775501, −8.697698004795462907973006810710, −7.37047365136649322702300170112, −6.30731291380189075104245450433, −5.70672545216908292895950509535, −4.33552640817428854407863321065, −2.36780115030343750314389151899, −1.07446734187228023635943245477, 1.07446734187228023635943245477, 2.36780115030343750314389151899, 4.33552640817428854407863321065, 5.70672545216908292895950509535, 6.30731291380189075104245450433, 7.37047365136649322702300170112, 8.697698004795462907973006810710, 9.183795088291003891715773775501, 10.06522826336291864322771359771, 10.71467008332142268420101746969

Graph of the $Z$-function along the critical line